首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

2.
Small kernels of soft wheat are sometimes considered to be harder than larger kernels and to have inferior milling and baking characteristics. This study distinguished between kernel size and kernel shriveling. Nine cultivars were separated into large, medium, and small kernels that had no shriveling. Eleven cultivars were separated into sound, moderate, and severely shriveled kernels. Shriveling greatly decreased the amount of flour produced during milling. It adversely affected all other milling quality characteristics (ash content, endosperm separation index, and friability). Shriveled kernels produced flour that had inferior soft wheat baking qualities (smaller cookie diameter and higher alkaline water retention capacity). In contrast, test weight and milling qualities were independent of kernel size. Small, nonshriveled kernels had slightly better baking quality (larger cookie diameter) than larger nonshriveled kernels. Small kernels were softer than large kernels (measured by break flour yield, particle size index, and flour particle size). Small nonshriveled kernels did not have diminished total flour yield potential or other reduced flour milling characteristics. Those observations suggest a possibility of separating small sound kernels from small shriveled kernels to improve flour yield and the need to improve dockage testing estimation techniques to distinguish between small shriveled and small nonshriveled kernels.  相似文献   

3.
Ten durum wheat cultivars harvested in Manitoba in 1995, which were downgraded primarily because of fusarium-damaged (FD) kernels, were subjected to mycological tests and evaluated for semolina milling and pasta-making quality. Fusarium graminearum was the primary fungus infecting kernels. The ratio of FD to deoxynivlaenol (DON) level varied slightly among cultivars but was generally near unity. Retention of DON in semolina was about 50%. FD had a negative impact on kernel weight and test weight, resulting in lower semolina yield. Semolina ash content and bran specks were not affected by FD, but semolina became duller and redder. FD had no effect on protein content, but gluten strength was weaker probably due to a lower proportion of glutenins as shown by reversed-phase high-performance liquid chromatographic analysis of sequentially extracted gluten proteins. The influence of FD on gluten strength was not sufficient to alter pasta texture. FD had a strong adverse effect on pasta color. Even for the least damaged cultivars, which had FD levels near the limit of 2% established for the No. 3 and No. 4 Canadian Western Amber Durum (CWAD) grades, the deterioration in pasta color was readily discernible by eye, confirming that the strict FD tolerances for premium No. 1 CWAD (0.25%) and No. 2 CWAD (0.5%) grades are warranted.  相似文献   

4.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

5.
Durum wheat bran was exposed to UV radiation up to 48 hr and the changes in ferulic acid (FA) content in the peripheral part s of grain were measured. The treatment resulted in a 25% decrease in FA monomer and a 44% decrease in dehydrodiferulic acid (DHD) ester‐linked to the cell‐wall arabinoxylans. This reduction was partly explained by a significant increase of FA (30%) and DHD (36%) engaged in hot alkali‐labile linkages. The results suggest that UV irradiation induced the formation of new cross‐links between feruloylated arabinoxylan and lignin in the pericarp. The effects of UV treatment on bran mechanical properties and wheat milling behavior were investigated. UV irradiation for 15 hr increased the stress to rupture by 30% and decreased the extensibility of bran tissues by 54%. This stiffening was associated with an increase in bran friability during grinding. Although this effect was due in part to the hydrothermal history of the grain, chemical modification induced by UV significantly influenced the size reduction of bran particles, which can be explained by the modification of the mechanical properties of bran. Relationships between the organization of cell‐wall polymers, the mechanical properties of tissues, and the behavior of wheat grain during milling were investigated.  相似文献   

6.
Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.  相似文献   

7.
The starchy endosperm proportion in durum wheat grain and its ability to be isolated from the peripheral tissues appear as main intrinsic characteristics potentially related to the milling value but still difficult to assess. In this study, several durum wheat samples displaying distinct grading characteristics were analyzed and processed through a pilot mill. The histological composition of grains and milling fractions was monitored by using identified biochemical markers of each wheat grain tissue. Contrasted milling yields of semolina and flour were observed between samples, despite displaying a similar starchy endosperm proportion determined by hand dissection. These yields were related both to differences in the starchy endosperm extraction and to the presence of the aleurone layer, particularly its cellular content. Furthermore, two distinct types of fractionation behavior of the aleurone layer were distinguished depending on the wheat grain sample. Extraction of the envelopes and embryonic axis into semolina and flours were found negligible in comparison with the other tissues.  相似文献   

8.
Predictions about milling, dough making, and baking properties can be made by measuring properties of the wheat grain with different small‐ and medium‐scale equipment. In this study, rheological hardness index (RHI) was shown to separate hexaploid wheats and durums into clearly distinct hardness classes. Earlier work demonstrated the utility of RHI to give new insight about the classification of wheat types, and in this study further use of the rheological phenotype phases (RPPs) to construct combinations of RPPs (cRPPs) is explored. In particular, it is shown how different cRPPs can be used to compare, for various wheat varieties, the elastic, fragmentation, equilibrium, and viscoelastic phases of an average crush response profile. In addition, relationships were obtained, based on selected RPPs from the single‐kernel characterization system, that gave good predictions of the laboratory milling potential of durum wheats. This information could be used as an early generation test to predict milling yield in breeding programs without having to mill the sample. Further validation of these relationships is required by evaluating the prediction across multiple environments.  相似文献   

9.
The Single Kernel Characterization System (SKCS 4100) measures single kernel weight, width, moisture content, and hardness in wheat grain with greater speed than existing methods and can be calibrated to predict flour starch damage and milling yield. The SKCS 4100 is potentially useful for testing applications in a durum improvement program. The mean SKCS 4100 kernel weight and moisture values from the analysis of 300 individual kernels gave good correlations with 1,000 kernel weight (r2 = 0.956) and oven moisture (r2 = 0.987), respectively. Although significant correlations were obtained between semolina mill yield and SKCS 4100 weight, diameter, and peak force, they were all very low and would be of little use for prediction purposes. Similarly, although there were significant correlations between some SKCS 4100 parameters and test weight and farinograph parameters, they too were small. The SKCS 4100 has been calibrated using either the single kernel hardness index or crush force profile to objectively measure the percentage vitreous grains in a sample with reasonable accuracy, and it correlates well with visual determination. The speed and accuracy of the test would be of interest to grain traders. An imprecise but potentially useful calibration was obtained for the prediction of semolina mill yield using the SKCS 4100 measurements on durum wheat. The SKCS 4100 is useful for some traits such as hardness, grain size and moisture for early‐generation (F3) selection in a durum improvement program.  相似文献   

10.
Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound-loaf sponge-dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough-handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness (r = -0.82) and enthalpy (r = -0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated (r = 0.65). Ball-milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.  相似文献   

11.
Two wheat cultivars, soft white winter wheat Yang‐mai 11 and hard white winter wheat Zheng‐mai 9023, were fractionated by kernel thickness into five sections; the fractionated wheat grains in the 2.7–3.0 mm section were separated sequentially into three fractions according to kernel specific density. Physical properties of unfractionated, fractionated, and separated wheat grains and the physicochemical properties of processed wheat flour were determined. Test weight, relative density, and whiteness of flour in the middle kernel thicknesses were maximal and those properties decreased with increasing or decreasing kernel thickness; they also decreased with decreasing kernel specific density. Extensigraph properties showed the same results. Water absorption of flour and kernel hardness increased with increasing kernel thickness and decreasing kernel specific density. The farinograph properties also were related to kernel thickness and specific density. Pasting viscosity increased with increasing kernel thickness for sections from <2.5 mm to 3.0–3.2 mm, except that the >3.2 mm section was lowest; the kernels with the lightest specific density also were lowest. Thus, the quality of wheat grains with the greatest kernel thickness was not the best, and in fact may be the worst. The quality of wheat grains with small kernel thickness and light kernel specific density generally were worst. Most physicochemical properties of unfractionated and unseparated wheat grains were accurately predicted by the weighted‐average of the different kernel thickness sections and different kernel specific density fractions, except relative density, falling number, dough development time, and pasting temperature.  相似文献   

12.
The structure of the aleurone layer was considered for many years as a potential factor influencing wheat milling efficiency. Eight durum wheat samples of different milling values, including distinct cultivars and harvesting conditions, were employed to investigate the structural characteristics of the aleurone layer through image analysis of kernel sections. Particular attention was paid to tissue thickness and structural irregularity of its interface with the starchy endosperm. Wheat cultivar, agricultural conditions, and location of measurement within the grain had an influence similar to both thickness and irregularity of the aleurone layer. Conversely, grain weight and morphology showed no effect on these parameters. Statistical investigation demonstrated no correlation between structural characteristics and wheat milling behavior. However, the negative correlation between the extraction rate of semolina and starch content in the bran fraction, which was used as an indicator of the endosperm‐aleurone dissociation extent, demonstrated the relevance of the tissue adhesion on milling efficiency.  相似文献   

13.
Whole grain wheat products are a growing portion of the foods marketed in North America, yet few standard methods exist to evaluate whole grain wheat flour. This study evaluated two flour milling systems to produce whole grain soft wheat flour for a wire‐cut cookie, a standard soft wheat product. A short‐flow experimental milling system combined with bran grinding in a Quadro Comil produced a whole grain soft wheat flour that made larger diameter wire‐cut cookies than whole grain flour from a long‐flow experimental milling system. Average cookie diameter of samples milled on the short‐flow mill was greater than samples milled on the long‐flow system by 1 cm/two cookies (standard error 0.09 cm). The long‐flow milling system resulted in more starch damage in the flour milling than did the short‐flow system. The short‐flow milling system produced flours that were useful for discriminating among wheat cultivars and is an accessible tool for evaluating whole grain soft wheat quality.  相似文献   

14.
Wheat flour tortillas were made from flour streams of three wheat cultivars: Jagger hard red winter wheat, 4AT-9900 hard white winter wheat, and Ernie soft red winter wheat. Wheat samples were milled on a Miag experimental mill. Twelve flour streams and one straight-grade flour were obtained. Tortillas were made from each flour stream and the straightgrade flour by the hot-press method. Tortilla stretchability and foldability were evaluated by a texture analyzer and six panelists, respectively. Flour protein and water absorption affected tortilla texture. The foldability evaluated by panelists was positively correlated with flour protein content, farinograph water absorption, and damaged starch (P < 0.05). The 2BK and 3BK streams of hard wheat produced tortillas with strong stretchability and good foldability. Middling streams of hard wheat yielded tortillas with lighter color and less stretchability. Under the conditions tested in this study, soft wheat flours were not good for producing flour tortillas.  相似文献   

15.
Plant breeding programs are active worldwide in the development of waxy hexaploid (Triticum aestivum L.) and tetraploid (T. turgidum L. var. durum) wheats. Conventional breeding practices will produce waxy cultivars adapted to their intended geographical region that confer unique end use characteristics. Essential to waxy wheat development, a means to rapidly and, ideally, nondestructively identify the waxy condition is needed for point‐of‐sale use. The study described herein evaluated the effectiveness of near‐infrared (NIR) reflectance single‐kernel spectroscopy for classification of durum wheat into its four possible waxy alleles: wild type, waxy, and the two intermediate states in which a null allele occurs at either of the two homologous genes (Wx‐1A and Wx‐1B) that encodes for the production of the enzyme granule bound starch synthase (GBSS) that controls amylose synthesis. Two years of breeders' samples (2003 and 2004), corresponding to 47 unique lines subdivided about equally into the four GBSS genotypes, were scanned in reflectance (1,000–1,700 nm) on an individual kernel basis. Linear discriminant analysis models were developed using the best set of four wavelengths, best four wavelength differences, and best four principal components. Each model consistently demonstrated the high ability (typically >95% of the time) to classify the fully waxy genotype. However, correct classification among the three other genotypes (wild type, wx‐A1 null, and wx‐B1 null) was generally not possible.  相似文献   

16.
Durum wheat gluten strength is important in determining extrusion properties and pasta cooking quality. Durum wheats varying in strength were tested using an alveograph and a 2-g micro-mixograph, both widely accepted techniques for determination of physical dough properties. Doughs from the 2-g micro-mixograph were characterized by dynamic oscillatory and large deformation creep tests using a controlled stress rheometer. Mechanical properties obtained from both testing regimes were strongly correlated with many of the parameters provided by the alveograph and micro-mixograph. Maximum strain attained after 5 min creep ranged from <5% for the strongest least extensible cultivar to >25% for the weakest cultivar, with a coefficient of variation among replicates of <10%. Storage modulus (G′) at 2 Hz ranged from ≈7,000 Pa for the weakest cultivar to >16,000 Pa for the strongest, least extensible cultivars, with a coefficient of variation of <6%. Tan δ (G″/G′) values were ≈0.4 for the strongest versus >0.5 for the weakest cultivars, indicating the larger contribution of the elastic component in the strong cultivars. The rheometer allows discrimination of durum wheat cultivars of varying gluten strength while requiring less sample than traditional physical dough testing techniques.  相似文献   

17.
Data on the quality of durum wheat genotypes grown under eight environments (site-year combinations) were evaluated to determine the relative effects of genotype and environment on quality characteristics associated with gluten strength, protein content, and pasta texture. The 10 durum wheat genotypes assessed in this study represented a range of gluten strength types from the very strong U.S. desert durum genotype, Durex, to the medium strength Canadian genotype, Plenty. Considerable genetic variability was detected for all quality characteristics studied. Genotype-environment interaction was significant for all quality parameters evaluated, with the exception of mixograph development time. Genotypeenvironment interaction was most important in determining protein content and least important in determining gluten index, gluten viscoelasticity, and SDS sedimentation volume. The nature of the genotype-environment interaction was evaluated by determining the number of significant crossover (rank change) interactions. There was at least one significant crossover interaction between pairs of genotypes and environments for five of eight quality traits tested. Of 45 genotype pairs, eight and six showed significant crossover interactions for protein content and pasta disk viscoelasticity, respectively. Significant crossover interactions were at least partially due to the differential response of Canadian genotypes as compared with U.S. genotypes. With the exception of protein content and pasta disk viscoelasticity, our results suggest that among the selected sample of 10 genotypes, genotype-environment interactions were minor and due primarily to changes in magnitude rather than changes in rank.  相似文献   

18.
A rapid shear‐based test using a GlutoPeak instrument was compared with tests commonly used by durum wheat breeders to assess the potential of this instrument to discriminate between samples. Thirty‐two durum wheat semolina samples were analyzed by mixograph, SDS sedimentation (SDSS), gluten index (GI), and GlutoPeak testing. A subset was also tested for pasta quality. GlutoPeak peak maximum time (PMT) was the best indicator of gluten strength and correlated well with the other tests except SDSS. Samples with higher levels of SDS‐unextractable glutenin (insoluble protein [IP]) had stronger dough and longer PMT, but the GlutoPeak test only correlated with pasta stickiness using a smaller set of samples. The range in mixogram profiles encountered in breeding material was related to the IP content, and the pasta made from the different types was of similar quality, differing more because of protein content rather than mixogram type. The GlutoPeak test is faster than GI and uses less sample, requires little technical skill, and is suitable for evaluating large numbers of breeder's lines. The GlutoPeak test is best suited to discriminating weak from strong dough samples and allows for testing with small samples, thus facilitating quality evaluations at early stages of a breeding program.  相似文献   

19.
The aim of this work was to assess the influence of wheat bran addition on the rheological properties of dough and on subsequent wheat bread volume and texture. Two types of bioprocessed bran (fermentation with yeast or with yeast plus enzymes) were studied in breadmaking at a substitution level of 20% (sufficient to deliver 6 g of dietary fiber per 100 g of product, the minimum for the European Food Safety Authority high‐fiber nutrition claim). Fermentation activated endogenous enzymes of bran, which together with exogenous enzymes modified the state of fiber in bran, resulting in solubilization of arabinoxylans and slight degradation of the insoluble fiber. Fermentation and enzyme treatment of bran compensated for the increased hardness (+100%) and the volume‐decreasing (–21%) effect observed with untreated bran. Analysis with partial least squares regression suggested the efficacy of bioprocessing to be based on solubilization of arabinoxylans, smaller particle size of bran, lower pasting viscosity of starch, improved resistance to extension, and accelerated CO2 production.  相似文献   

20.
Microbial transglutaminase (MTGase), a protein‐glutamine γ‐glutamyl transferase (E.C. 2.3.2.13), catalyzes acyl transfer reactions by introducing a covalent cross‐link between l ‐lysine and l ‐glutamine residues. The use of this enzyme has been proposed as an improver to increase dough strength. The objective of this study was to assess and compare the effect of MTGase on different fractions of dough proteins found in hard, soft, and durum wheat. Three different concentrations of the MTGase (0, 5, and 10U/g of gluten) were tested. Moisture, protein, and dry gluten contents were determined for each concentration in addition to rheological measurements done with the farinograph. Following each treatment, the dough proteins were extracted and analyzed by SE‐HPLC and RP‐HPLC. Soluble polymeric protein, gliadins, albumins, and globulins were quantified in addition to the gliadin subclasses and glutenin subunit types. The combustion procedure was used to determine the amount of insoluble polymeric protein. Differences were observed in susceptibility to MTGase catalysis among the dough proteins of the cultivars studied: the cultivar Cortazar (soft wheat) was the most susceptible. The proteins of this cultivar had a characteristically higher amount of ω and α+β gliadins when compared with the other cultivars. As reported earlier, solubility of high molecular weight glutenin subunits and ω‐gliadins was reduced because of the MTGase treatment. However, all gliadin subclasses, including the γ and α+β gliadins, also participated in cross‐linking. The proteins of the cultivar Altar (durum wheat) were the least susceptible to the effects of MTGase. Albumins and globulins did not show any reduction in solubility, implying that they did not participate in cross‐linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号