首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

2.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g?1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

3.
An experiment was carried out to investigate the decomposition and microbial use of maize leaf straw incubated in packed soil columns at different depths. The straw was incorporated into the top layer at 0–5 cm depth and into the bottom layer at 15–20 cm depth of a sandy or a loamy soil. Microbial biomass C was significantly increased after adding straw to the bottom layer of both soils. After adding straw to the top layer, this increase was significantly lower in the sandy soil and significantly higher in the loamy soil. Maize straw application significantly increased the ergosterol-to-microbial biomass C ratio in both soils from 0.26% to a mean content of 0.72% after adding straw to the top layer and to a mean content of 1.11% after adding straw to the bottom layer. The calculation of the maize-derived CO2 production revealed that the mineralization rates of maize C were always higher in the sandy soil, with a mean of 20%, than in the loamy soil, with a mean of 14%. The application of maize straw always significantly increased the soil organic matter-derived CO2 production. This increase was stronger in the loamy soil than in the sandy soil and stronger after application of the maize straw to the top layer than to the bottom layer. On average, 100% of the maize straw C was recovered in the different fractions analysed. In the layers with maize leaf straw application, 28% of the maize C was recovered as particulate organic matter (POM) > 2 mm and 32% as POM 0.4–2.0 mm, without a significant difference between the two soils and the depth of application. In the layers with maize leaf straw application, 19% of the maize C was recovered as microbial residue C and 3.1% as microbial biomass C. In the three layers without straw, the microbial biomass incorporated a further 2.4% of the maize C in the sandy soil, but only 0.9% in the loamy soil. Considerable amounts of substrate C were transferred within the microbial biomass over a decimetre distance. The finer pore space of the loamy soil seems to obstruct the transfer of maize-derived C. This was especially true if the maize leaf straw was added to the bottom layer.  相似文献   

4.
Annual ryegrass (Lolium multiflorum Lam.) and crimson clover (Trifolium incarnatum L.) were pulse-labeled with 13C-CO2 in the field between the initiation of late winter growth (mid-February) and through flowering and seed formation (late May). Straw was harvested after seed maturation (July), and soil containing 13C-labeled roots and root-derived C was left in the field until September. 13C-enriched and 13C-unenriched straw residues of each species were mixed in factorial combinations with soil containing either 13C-enriched or 13C-unenriched root-derived C and incubated in the field for 10 months. The contributions of C derived from straw, roots, and soil were measured in soil microbial biomass C, respired C, and soil C on five occasions after residue incorporation (September, October, November, April, and June). At straw incorporation (September), 25–30% of soil microbial biomass C was derived from root C in both ryegrass and clover treatments, and this value was sustained in the ryegrass treatment from September to April but declined in the clover treatment. By October, between 20 and 30% of soil microbial biomass C was derived from straw, with the percentage contribution from clover straw generally exceeding that from ryegrass straw throughout the incubation. By June, ryegrass root-derived C contributed 5.5% of the soil C pool, which was significantly greater than the contributions from any of the three other residue types (about 1.5%). This work has provided a framework for more studies of finer scale that should focus on the interactions between residue quality, soil organic matter C, and specific members of the soil microbial community.  相似文献   

5.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

6.
This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar. This labile fraction possibly supported the higher CO2 emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 μm), and BET surface areas (0.6 and 1.6 m2 g?1) of the SP- and FP-biochars, respectively. The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N.  相似文献   

7.
《Applied soil ecology》2001,16(3):195-208
Soil structure mediates many biological and physical soil processes and is therefore an important soil property. Physical soil processes, such as aggregation, can be markedly influenced by both residue quality and soil microbial community structure. Three experiments were conducted to examine (i) the temporal dynamics of aggregate formation and the water stability of the obtained aggregates, (ii) the effect of residue quality on aggregation and microbial respiration, and (iii) the effect of fungi and bacteria on aggregation.In the first experiment, 250 μm sieved air-dried soil, mixed with wheat straw, was incubated for 14 days to allow formation of water-stable macroaggregates (>250 μm). Aggregate stability was measured by wet sieving after four different disruptive treatments: (i) soil at field capacity; (ii) soil air-dried and slowly wetted; (iii) soil air-dried and quickly wetted; (iv) 8 mm sieved soil, air-dried and immersed in water (slaking). After 14 days of incubation, maximum aggregation for soil sieved at field capacity was reached; however, these newly formed aggregates were not yet resistant to slaking.During the second experiment, the effect of low-quality residue (C/N: 108) (with or without extra mineral nitrogen) and high-quality residue (C/N: 19.7) (without extra mineral nitrogen) on macroaggregate formation and fungal and bacterial populations was tested. After 14 days, aggregation, microbial respiration, and total microbial biomass were not significantly different between the low-quality (minus mineral nitrogen) and high-quality residue treatment. However, fungal biomass was higher for the low-quality residue treatment compared to the high-quality residue treatment. In contrast, bacterial populations were favored by the high-quality residue treatment. Addition of mineral N in the low-quality residue treatment resulted in reduced macroaggregate formation and fungal biomass, but had no effect on bacterial biomass. These observations are not conclusive for the function of fungal and/or bacterial biomass in relation to macroaggregate formation. In order to directly discern the influence of soil microflora on aggregation, a third experiment was conducted in which a fungicide (captan) or bactericide (oxytetracycline) was applied to selectively suppress fungal or bacterial populations. The direct suppression of fungal growth by addition of fungicide led to reduced macroaggregate formation. However, suppression of bacterial growth by addition of bactericide did not lead to reduced macroaggregate formation. In conclusion, macroaggregate formation was positively influenced by fungal activity but was not significantly influenced by residue quality or bacterial activity.  相似文献   

8.
【目的】研究不同含磷量的小麦秸秆还田对土壤磷素有效性的影响及其机理,为秸秆还田促进砂姜黑土磷素高效利用提供理论支撑。【方法】采用室内模拟培养试验方法,供试土壤为砂姜黑土。高磷和低磷小麦秸秆取自长期定位试验的施磷和空白对照小区,小麦秸秆含磷量分别为2.17、0.51 mg/kg。培养试验设不添加秸秆对照(CK)、添加低磷小麦秸秆(LS)、添加高磷小麦秸秆(HS) 3个处理,保持70%田间持水量,25℃下恒温培养90天。在培养0、3、7、15、30、60、90天时,测定土壤Olsen-P、无机磷组分、有机磷组分、磷酸酶活性、解磷菌数量、土壤微生物量磷(MBP),计算土壤MBP的周转量和周转率。【结果】土壤Olsen-P含量随培养时间增加,在培养第15天达到稳定。培养90天时,HS处理Olsen-P含量比CK提高了59.4%,而LS处理土壤Olsen-P含量比CK降低了23.9%(P<0.05)。培养90天时,HS和LS处理土壤Ca10-P和Fe-P含量均显著低于CK处理,而Ca8-P含量显著高于CK处理,HS处理的Ca2  相似文献   

9.
Laboratory and greenhouse experiments were conducted to study the effects of applications of rice residue and Pongamia pinnata and Azadirachta indica leaf litters on biochemical properties (extraction yield of humus, composition of humus, microbial biomass carbon, activities of urease and acid phosphatase) of a lowland rice soil under flooded conditions. Bulk soil sample collected from the Mandya paddy fields was used for the green house trials and the laboratory incubation studies. The organic materials were added at three rates – zero, 25.0 g carbon kg−1 (2.5% C) and 50.0 g carbon kg−1 dry soil (5.0% C). Results showed that tree leaf litter and rice residue at 5.0% C rate decreased instantaneous decay constant (k), there by retarded the rate of C mineralization. Carbon contents of HA increased with the rate of C added. Study of delta–log K values and C contents of humic acids revealed that greatest molecular weight of HA was in the pongamia litter treatment, followed by neem litter and rice residue. Grain and straw yields of rice crop in the pot culture study were statistically correlated to the soil quality parameters. Neem and pongamia tree litter incorporation at 2.5% C could be considered for improving soil health and crop yields of rice under flooded conditions; however, application at higher rates significantly (P ≤ 0.05) lowered total dry matter production in rice, despite favorable soil health parameters such as humic yields, microbial biomass – C content and acid phosphatase and urease activity. Among different soil health parameters, microbial quotient was found to be more sensitive indicator of decline in soil quality.  相似文献   

10.
A laboratory incubation experiment was conducted to investigate the fates of plant-derived C during the simulated fallow period in a rice soil. The 13C labelled soil and plant materials were used to follow the residue decomposition and its effect on soil organic C (SOC) dynamics under the conditions of either incorporation into soil or intact root systems. The soils were incubated at 15 °C for 240 d and destructive sampling was conducted at 60, 150 and 240 d. To observe the temperature effect, one batch of incubation was shifted from 15 to 25 °C during the last 45 d (between 195 and 240 d). The results showed that the decomposition of the incorporated residues could be divided into two phases: an initial rapid phase followed by a slower phase of decomposition. The decomposition of straw residues was faster than root residues: with 73% of the straw residue being decomposed, compared with 56% of the root residue over 240-d incubation at 15 °C. The water-soluble organic C and microbial biomass C significantly increased after residue incorporation. The total SOC contents, however, slightly decreased, although significant amounts of straw C (14.2%) and root C (8.7%) were found in SOC at the end of incubation, suggesting that the degradation of native SOC occurred concomitantly. Similar to decomposition of the incorporated residues, the organic substances derived from rhizodeposition of the previous season were mineralized rapidly at first and then slowly. The decomposition of the intact root system, however, was extremely slow. This result suggested that the intact root system conserved more organic C in soils compared with the incorporation of fresh residues. Increase of temperature from 15 to 25 °C during the last 45-days of incubation significantly promoted the residue decomposition.  相似文献   

11.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

12.
A short-term mesocosm experiment was conducted to ascertain the impact of tebuconazole on soil microbial communities. Tebuconazole was applied to soil samples with no previous pesticide history at three rates: 5, 50 and 500 mg kg−1 DW soil. Soil sampling was carried out after 0, 7, 30, 60 and 90 days of incubation to determine tebuconazole concentration and microbial properties with potential as bioindicators of soil health [i.e., basal respiration, substrate-induced respiration, microbial biomass C, enzyme activities (urease, arylsulfatase, β-glucosidase, alkaline phosphatase, dehydrogenase), nitrification rate, and functional community profiling]. Tebuconazole degradation was accurately described by a bi-exponential model (degradation half-lives varied from 9 to 263 days depending on the concentration tested). Basal respiration, substrate-induced respiration, microbial biomass C and enzyme activities were inhibited by tebuconazole. Nitrification rate was also inhibited but only during the first 30 days. Different functional community profiles were observed depending on the tebuconazole concentration used. It was concluded that tebuconazole application decreases soil microbial biomass and activity.  相似文献   

13.
《Soil biology & biochemistry》2001,33(4-5):583-591
Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.  相似文献   

14.
采用室内恒温培养法,研究了在乌沙土上添加15N标记秸秆后,秸秆15N在矿质氮、微生物氮和土壤不同组分中的分配情况,并应用氮同位素库稀释法测定了秸秆在乌沙土上的氮总矿化速率。结果表明:将秸秆添加到土壤后,微生物氮量显著增加,而土壤矿质氮量在14天时迅速下降。随着秸秆的分解,秸秆15N进入矿质氮库和微生物氮库,矿质15N在第7 d时最高,占到添加秸秆15N的6.7%,微生物15N在第14 d最高,占到添加秸秆15N的18.1%,随后矿质15N和微生物15N量都下降。56 d时,仍有50.8%的秸秆氮没有分解掉,5.4%的秸秆15N进入土壤53μm~2 mm组分,15.5%进入2~53μm组分,14.6%进入小于2μm组分,有13.6%的秸秆氮损失掉。在培养开始时,乌沙土的氮总矿化速率为2.81 mg kg-1d-1,秸秆在乌沙土上的氮总矿化速率分别为2.50 mg kg-1d-1。  相似文献   

15.
We analysed the decomposition of 14C-labelled straw at five different levels of heavy metal contamination (100-20,000 µg total Zn g-1 soil) in non-fumigated and repeatedly fumigated soils. The soils were not spiked with Zn, but were taken from sites containing different heavy metal concentrations. Zn was only used as a reference and the effects observed are most likely due to this metal. Microbial biomass decreased with increasing heavy metal content of soils, paralleled generally by the decreasing amount of wheat straw 14C incorporated into the microbial biomass. In addition, the newly synthesised microbial biomass declined more rapidly as the incubation proceeded. In the repeatedly fumigated soils, microbial biomass 14C corresponded to roughly 50% of the maximum 14C incorporation of the non-fumigated soil. The relative decline during incubation was similar to that of the non-fumigated soil at the respective contamination level. These results reveal clearly that heavy metal effects on straw decomposition do not depend on the ratio of substrate C to microbial biomass C. In contrast to microbial biomass C, the mineralisation of the wheat straw was not seriously affected by heavy metal contamination. The same was true for all of the repeatedly fumigated treatments, where a much smaller microbial biomass mineralised nearly the same amount of straw as in the non-fumigated soils. However, repeated fumigation caused a strong reduction in the decomposition of soil organic matter. The ratio of CO2-14C to microbial biomass 14C after 60 days was linearly related to the Zn concentration in both non-fumigated and repeatedly fumigated samples, clearly indicating that an additional energy cost is required by soil microorganisms with increasing heavy metal concentrations.  相似文献   

16.
In a laboratory experiment, incorporation of paddy straw in soil immobilized native as well as added fertilizer N and about half of the immobilized N was mineralized after 90 days of straw incorporation. Straw and N application alone or in combination increased biomass carbon, phosphatase and respiratory activities of the soil. Microbial biomass carbon and phosphatase activity were maximum at 30 days of straw decomposition. In field trials, incorporation of paddy straw 3 weeks before sowing of wheat significantly increased the wheat yield at Sonepat district in a clay loam soil while no such beneficial effect was observed in a sandy loam soil at Hisar.  相似文献   

17.
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil.  相似文献   

18.
Salinization is a global land degradation issue which inhibits microbial activity and plant growth. The effect of salinity on microbial activity and biomass has been studied extensively, but little is known about the response of microbes from different soils to increasing salinity although soil salinity may fluctuate in the field, for example, depending on the quality of the irrigation water or seasonally. An incubation experiment with five soils (one non-saline, four saline with electrical conductivity (ECe) ranging from 1 to 50 dS m−1) was conducted in which the EC was increased to 37 ECe levels (from 3 to 119 dS m−1) by adding NaCl. After amendment with 2% (w/w) pea straw to provide a nutrient source, the soils were incubated at optimal water content for 15 days, microbial respiration was measured continuously and chloroform-labile C was determined every three days. Both cumulative respiration and microbial biomass (indicated by chloroform-labile C) were negatively correlated with EC. Irrespective of the original soil EC, cumulative respiration at a given adjusted EC was similar. Thus, microorganisms from previously saline soils were not more tolerant to a given adjusted EC than those in originally non-saline soil. Microbial biomass in all soils increased from day 0 to day 3, then decreased. The relative increase was greater in soils which had a lower microbial biomass on day 0 (which were more saline). Therefore the relative increase in microbial biomass appears to be a function of the biomass on day 0 rather than the EC. Hence, the results suggest that microbes from originally saline soils are not more tolerant to increases in salinity than those from originally non-saline soils. The strong increase in microbial biomass upon pea straw addition suggests that there is a subset of microbes in all soils that can respond to increased substrate availability even in highly saline environments.  相似文献   

19.
Biochar has been widely proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. To quantify the changes in soil microbial biomass and to understand the mechanisms involved, two biochars were prepared at 350 °C (BC350) and 700 °C (BC700) from Miscanthus giganteus, a C4 plant, naturally enriched with 13C. The biochars were added to soils of about pH 4 and 8, which were both sampled from a soil pH gradient of the same soil type. Isotopic (13C) techniques were used to investigate biochar C availability to the biomass. Scanning Electron Microscopy (SEM) was used to observe the microbial colonization, and Attenuated Total Reflectance (ATR) to highlight structural changes at the surface of the biochars. After 90 days incubation, BC350 significantly increased the biomass C concentration relative to the controls in both the low (p < 0.05) and high pH soil (p < 0.01). It declined between day 90 and 180. The same trend occurred with soil microbial ATP. Overall, biomass C and ATP concentrations were closely correlated over all treatments (R2 = 0.87). This indicates that neither the biomass C, nor ATP analyses were affected by the biochars, unless, of course, they were both affected in the same way, which is highly unlikely. About 20% of microbial biomass 13C was derived from BC350 after 90 days of incubation in both low and high pH soils. However, less than 2% of biomass 13C was derived from BC700 in the high pH soil, showing very low biological availability of BC700. After 90 days of incubation, microbial colonization in the charsphere (defined here as the interface between soil and biochar) was more pronounced with the BC350 in the low pH soil. This was consistent with the biomass C and ATP results. The microbial colonization following biochar addition in our study was mainly attributed to biochar C availability and its large surface area. There was a close linear relationship between 13CO2 evolved and biomass 13C, suggesting that biochar mineralization is essentially a biological process. The interactions between non-living and living organic C forms, which are vital in terms of soil fertility and the global C cycle, may be favoured in the charsphere, which has unique properties, distinct from both the internal biochar and the bulk soil.  相似文献   

20.
N dynamics in soil where wheat straw was incorporated were investigated by a soil incubation experiment using 15N-labelled nitrate or 15N-labelled wheat straw. The incubated soils were sampled after 7, 28, 54 days from the incorporation of wheat straw, respectively, and gross rates of N transformations including N remineralization and temporal changes in the amount of microbial biomass were determined.Following the addition of wheat straw into soils, rapid decrease of nitrate content in soil and increase of microbial biomass C and N occurred within the first week from onset of the experiment. Both the gross rates of mineralization and immobilization determined by 15N-ammonium isotope dilution technique were remarkably enhanced by the addition of wheat straw, and gradually decreased with time. Remineralization rate of N derived from 15N-labelled nitrate, and mineralization rate of N derived from 15N-labelled wheat straw was estimated by 15N isotope dilution technique using non-labelled ammonium. Remineralization rates of N derived from 15N-labelled nitrate were calculated to be 0.71 mg N kg−1 d−1 after 7 days, 0.55 mg N kg−1 d−1 after 28 days, and 0.29 mg N kg−1 d−1 after 54 days.Nearly 10% of the 15N-labelled N originally contained in the wheat straw was held in the microbial biomass irrespective of the sampling time. The amount of inorganic N in soil which was derived from 15N-labelled wheat straw ranged between 1.93 and 2.37 mg N kg−1.Rates of N transformations in soil with 15N-labelled wheat straw were obtained by assuming that the k value was equal to the 15N abundance of biomass N, and the obtained values were considered to be valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号