首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in steer and heifer finishing performance impact the relative competitiveness of the beef industry. This study examined improvements in the finishing performance of steers and heifers from January 1990 to December 1998. Data were obtained from monthly issues of the Focus on Feedlots newsletter. Steer and heifer performance were measured using ADG, feed efficiency, the rate of technological change, and the rate of change in total feeding cost. The rate of technological change measured shifts in the production frontier for steers and heifers. The rate of change in total feeding cost measured shifts in the cost frontier. ADG improved 0.99% per year for steers and 0.96% per year for heifers. Feed efficiency improved 0.60% per year for steers and 0.72% per year for heifers. The rate of technological change averaged 0.58% per year for steers and 1.01% per year for heifers. The positive rates of technological change indicated that the rate of change in BW gain was greater than the rate of change in feed fed. Total feeding cost for heifers increased by 0.63% per year. For steers, the rate of change in total feeding costs was positive, but insignificant. The higher rate of cost increase for heifers was the result of relatively large increases in BW gain for heifers during the study.  相似文献   

2.
To determine the effects of DL-malate on ruminal metabolism, four steers equipped with ruminal cannulas were fed an 80% rolled grain (75% corn:25% wheat) diet twice daily with a DMI equal to 2.0% of BW (485+/-24.8 kg). DL-Malate was infused into the rumen on two consecutive days in 500 mL of phosphate buffer to provide 0, 27, 54, or 80 g of DL-malate/d. Ruminal pH linearly increased (P < .01) with DL-malate concentration and was greater (P < .01) for DL-malate than for the control steers (6.07 vs 5.77). DL-Malate treatment linearly decreased (P < .10) total VFA and tended to linearly increase (P = .10) acetate concentration. Propionate, butyrate, and L-lactate concentrations and acetate:propionate ratio were not affected (P > .10) by DL-malate. Three finishing studies were conducted to determine the effects of feeding DL-malate on growth rate and feed efficiency. In a 98-d experiment, 33 crossbred steers were randomly allotted in a Calan gate feeding system to three DL-malate levels (0, 40, and 80 g/d). Steers (initial weight = 367+/-4.5 kg) were fed a rolled corn-based diet twice daily. After 84 d on feed, gain efficiency (gain:feed) tended to improve with more DL-malate (linear, P < .10) and was 8.1% greater (P < .05) for DL-malate than for the control. The ADG linearly increased (P < .05) with more DL-malate and was 8.6% greater (P = .10) for DL-malate than for the control. After 98-d on feed, ADG was linearly increased (P = .09) by DL--malate, and the greatest increase occurred with 80 g of DL-malate. In the second performance study, 27 Angus steers were randomly allotted in a Calan gate feeding system to three DL-malate concentrations (0, 60, and 120 g/d). Steers (initial weight = 432+/-4.6 kg) were fed diets used in the first finishing study twice daily, but DL-malate was included during the 10-d step-up period. During the 10-d step-up period, feed efficiency and ADG linearly increased (P = .01) with more DL-malate. DL-Malate had little effect on steer and heifer performance or plasma constituents in a 113-d finishing study. Collectively, these results suggest that feeding DL-malate to cattle consuming high-grain diets alleviates subclinical acidosis, and it improved animal performance in two finishing studies.  相似文献   

3.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

4.
Sixty mixed British breed yearling steers (237 kg) were used each year for 2 yr to study the effects of rate of gain during the winter on subsequent pasture and finishing performance. Winter gains of .28, .38 and .50 kg/d (P less than .05) were established for the low, medium and high gain treatments, respectively. Daily gain of steers on pasture was reduced (P less than .01) 81 g for each 100-g increase in winter daily gain. No differences in BW were observed among the treatment groups after grazing summer pasture. Wintering performance did not affect finishing performance. Daily gains during the finishing period increased slightly as pasture gain decreased due to increased feed intake, but efficiency was not altered. These data suggest that within this range of ADG during the winter and under the conditions of this study, it was not beneficial to winter cattle for an ADG more than .28 kg/d.  相似文献   

5.
The relationship between feeding behavior and performance of 274 feedlot cattle was evaluated using Charolais cross steers from 2 consecutive years averaging 293 ± 41 kg for yr 1 (n = 115) and 349 ± 41 for yr 2 (n = 159). Steers were blocked by BW and assigned to 3 (yr 1) or 4 (yr 2) feedlot pens equipped with a radio frequency identification system (GrowSafe Systems). Each pen contained 5 feeding stalls that allowed individual animal access to a feed tub suspended on load cells. The system recorded animal identification, duration, and frequency of feedings as well as the amount of feed consumed during each visit. Daily variation in DMI (DVI), calculated as the absolute difference in DMI from one day to the next, as well as eating rate were determined for each steer. Barley-based diets were delivered to meet steer ad libitum intake over the 213- and 181-d feeding periods for yr 1 and 2 of the study, respectively. The backgrounding periods included the first 85 and 56 d of yr 1 and 2, respectively, in which steers were fed a 14 to 30% concentrate diet, whereas the finishing periods included the last 116 and 101 d of feeding in yr 1 and 2, respectively, with the diet consisting of 77.9% concentrate. Steers were weighed individually every 14 d. To relate feeding behavior to performance, steers were grouped by ADG and G:F and categorized as high, average, or low (based on 1 SD greater than and less than the mean). In the backgrounding and finishing periods of both years of the study, steers classified as having high ADG exhibited greater (P < 0.001) DVI than steers classified as having average or low ADG. Total daily DMI was also greater (P < 0.001) for steers in the high ADG group than those in the low ADG group. Overall, those steers with the greatest G:F also tended (P = 0.15) to have greater DVI than average or low G:F steers. Compared with average or low G:F steers, DMI by high G:F steers in both years of the study was less during backgrounding, finishing, and overall (P = 0.02). Bunk visits and bunk attendance duration were less frequent and shorter (P ≤ 0.01) overall for high compared with low G:F steers. In this study, steers with more variable eating patterns exhibited greater ADG and tended to have greater G:F, a finding that is contrary to industry perception.  相似文献   

6.
Two experiments at 2 Nebraska locations evaluated effects of heifer development system on growth and pregnancy rate. In Exp. 1, heifers (n=270, BW=225 ± 2 kg) grazed winter Sandhills range (WR) or west central Nebraska corn residue (CR) with a supplement (0.45 kg/animal; 31% CP; 80 mg·animal(-1)·d(-1) of monensin). In Exp. 2, heifers (n=180, BW = 262 ± 3 kg) grazed eastern Nebraska WR or CR with a supplement (0.45 to 0.90 kg/d; 31% CP; 80 to 160 mg·animal(-1)·d(-1) of monensin). The CR heifers tended to have less (P=0.10) ADG compared with WR heifers before breeding in Exp. 1; however, prebreeding ADG was similar (P=0.77) in Exp. 2. Prebreeding BW, percentage of mature BW at breeding, and pregnancy determination BW were similar (P ≥ 0.14) for CR and WR in both experiments. Percentage of heifers pubertal at breeding, AI conception, and AI pregnancy rate (Exp. 2) and final pregnancy rate in both experiments were also similar (P ≥ 0.27) for CR and WR heifers. Precalving BW, percentage of calves born in the first 21 d, calf birth date, calf birth BW, and dystocia score were all similar (P ≥ 0.21) for CR and WR heifers in both experiments. Cow BW at weaning, calf weaning BW, adjusted 205-d calf BW, and second season pregnancy rates were not affected (P ≥ 0.16) by treatment. Heifer development system did not affect (P ≥ 0.56) the cost of producing 1 pregnant heifer in Exp. 1 or 2. Development on CR may reduce ADG before breeding, but did not affect pregnancy rate. Heifer development using CR or WR postweaning resulted in similar reproductive performance and development cost.  相似文献   

7.
Four trials were conducted to determine the effects of adding various levels and types of fat to dry-rolled corn (DRC) finishing diets containing 0 or 7.5% forage. In Trial 1, 88 yearling steers (mean BW = 352 +/- 38 kg) and 176 heifers (mean BW 316 +/- 15 kg) were blocked by sex and weight into four replications. Treatments were 0, 2, 4, or 6% (DM basis) bleachable fancy tallow (BT) fed with 0 or 7.5% (DM basis) forage. Addition of BT to the 7.5% forage diet had no effect on ADG or gain/feed (G/F). However, adding BT to the all-concentrate diet decreased ADG (linear, P < .01) and G/F (linear, P = .08). In Trial 2, 184 yearling steers (mean BW = 347 +/- 21 kg) and 144 heifers (mean BW 322 +/- 8 kg) were blocked by sex and weight into six replications. Fat treatments were 0% fat, 4% BT, or 4% animal-vegetable oil blend (A-V); each fat treatment was fed with 0 or 7.5% forage. Across forage levels, the addition of fat increased (P < .01) ADG and G/F for cattle fed DRC. In Trial 3, 18 crossbred wether lambs (mean BW = 44.4 +/- 2.5 kg) were fed DRC and 7.5% forage and allotted randomly to the same fat treatments fed in Trial 2. Apparent total tract fat digestibility increased (P < .01) with the addition of BT or A-V. In Trial 4, 40 crossbred wethers (mean BW = 25 +/- 4.1 kg) and 16 ewes (mean BW = 23 +/- 2.7 kg) were individually fed 7.5% forage diets containing 0, 1, 2, or 4% BT. Addition of BT increased (linear, P = .10) G/F. In summary, fat addition to DRC finishing diets fed to yearling cattle did not consistently affect gain/feed, feed intake, and ADG.  相似文献   

8.
Ninety-six steers (average BW = 335 ± 36 kg) were allotted in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Factors were 1) implant on d 1 or no implant and 2) ad libitum access to feed on d 1 or programmed-fed for a target BW gain of 1.4 kg/d during the first 62 d of the feeding period. On d 63, all steers were implanted with Revalor-S® (Hoechst Roussel Vet, Overland Park, KS) and provided ad libitum access to feed until harvest. From d 63 to 116, ADG and gain efficiency (g gain/kg DMI) for steers programmed-fed to gain slowly were greater (P<0.05) than those for steers fed to gain rapidly during the first 62 d of the trial. Restricting feed intake to limit ADG during the first 62 d of the finishing period increased ADG during the remaining portion of the finishing period. Gain efficiency was increased (P=0.097) throughout the entire finishing period by limiting ADG during the first 62 d of the experiment. Steers implanted twice and fed to gain rapidly had the least fat in the 9th to 11th rib section; steers with a delayed implant and programmed-fed to gain slowly had the most fat in this same section. In this experiment, no significant interactions occurred except for fat weight in the 9th to 11th rib sections, although steers implanted on d 1 and fed to gain rapidly tended to have fewer days on feed.  相似文献   

9.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

10.
A published model designed to predict individual feed required for the observed shrunk BW and ADG of growing cattle when fed in groups was modified and evaluated to improve its accuracy. This model is needed to accurately bill feed and compute cost of gain in marketing programs based on individual animal management. Because of its importance in predicting energy required for growth, a database of 401 steers was used to develop an equation to predict percentage of empty-body fat (EBF) from carcass measurements (12th rib fat thickness, hot carcass weight, USDA quality grade, and longissimus muscle area), which accounted for 61% of the variation in EBF with no bias (P > 0.1). When tested with an independent data set of 951 steers, the equation accounted for 51% of the variation with 1% proportional bias. The large variation in the carcass measurements at a particular EBF observed in this study indicates further improvement is limited by the inability of carcass measurements to account for variation in fat distribution in the various carcass components. Because of its importance in setting the target end point, a database of 1,355 steers and heifers was used to determine the relationship between EBF and USDA quality grade. These data indicate growing and finishing cattle reach Select and low-Choice quality grades at an EBF of 26.15 +/- 0.19 and 28.61 +/- 0.20%, respectively (P < 0.05). A data set of 228 steers from different breeds from two serial slaughter studies indicated 14.26 +/- 1.52 kg of empty BW change are required to increase EBF one percentage unit for cattle fed high-energy diets; this adjustment is needed to adjust final shrunk BW to the target EBF end point. The model to predict DM required with modifications developed in this study was evaluated with data from 365 individually fed cattle and it accounted for 74% of the variation in observed DM consumed with no bias (P > 0.1). When the revised model was applied to a commercial feedlot data set containing 12,105 steers and heifers, the total observed DM consumed was predicted with a bias of less than 1%. The model presented in this study accounts for differences known to affect animal requirements (breed type, BW and ADG, and weight at the target EBF end point) and can be used to fairly allocate feed to individuals fed in a group under commercial feedlot conditions.  相似文献   

11.
Three experiments were conducted to determine the influence of both the concentration of endophytic fungus infestation in tall fescue pastures and calf genotype on the subsequent health and performance of steers in the feedlot. In Exp. 1 and 2, Angus steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte infestations for 182 d (Exp. 1) or 78 d (Exp. 2) with 12 steers per treatment. Steers were transported 1,600 km to Texas in October (Exp. 1) and July (Exp. 2), were fed a 93% concentrate diet during the finishing period, and were harvested at an estimated backfat thickness of 12 mm. In both trials, DMI over the entire feeding period and carcass characteristics were not affected (P>0.05) by endophyte infestation. In both trials, pasture ADG decreased, and feedlot ADG and gain to feed ratio increased as the previous pasture endophyte infestation increased (P<0.05). Serum cholesterol concentrations tended (P<0.10) to decrease with increasing endophyte infestation during the first 14 d in the feedlot. In Exp. 3, Angus and Brahman × British crossbred steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte in each of 2 yr. Six steers of each breed group were on each treatment each year. Steers were transported to Texas in late August of each year, were fed a 93% concentrate finishing diet, and were harvested at an estimated individual backfat thickness of 12 mm. As endophyte infestation increased, serum urea N concentrations and gain to feed ratios increased (P<0.05), whereas pasture ADG, initial BW, transit shrink, serum cholesterol concentrations, final BW, and carcass weights decreased (P<0.05) in Angus steers, but not in Brahman-cross steers. In these studies, the adverse effects of high endophyte infestations in fescue pastures appeared to carry over to the feedlot for ca. 14 d. However, steers from highly infested pastures can compensate for poor pasture performance with improved performance in the feedlot when no adverse health effects occur. Any impact of the endophyte seems to be similar in Brahman-cross and Angus steers.  相似文献   

12.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

13.
Four experiments were conducted to determine the effects of feed intake fluctuation, feeding frequency, time of feeding, and rate of gain on performance by limit-fed steers. Mean initial BW for steers in Experiments 1, 2, 3, and 4 were 378 ± 43, 225 ± 19, 227 ± 20, and 249 ± 17 kg, respectively. All experiments were complete random designs, and pen was the experimental unit. In Experiment 1, 10% daily variation in feed intake resulted in decreased (P<0.10) ADG and ratio of gain to feed (G/F) compared with steers fed either a constant amount or a 10% weekly variation in feed intake. In Experiment 2, steers fed once daily at 0800 h; once daily at 1700 h; twice daily at 0800 and 1700 h; or thrice daily at 0800, 1230, and 1700 h did not affect (P>0.10) ADG or G/F. Average daily gain and G/F by steers programed to gain 1.25 kg/d were not affected (P>0.10) by 10% fluctuation in feed intake or twice daily feeding in Experiment 3. Treatments used in Experiment 4 consisted of 1) steers fed to gain 0.9 kg/d, 2) steers fed to gain 0.9 kg/d with 10% daily feed intake fluctuation, 3) steers fed to gain 1.25 kg/d, and 4) steers fed to gain 1.25 kg/d with 10% daily feed intake fluctuation. Fluctuation in feed intake did not affect (P>0.10) ADG at either rate of gain. Results suggest that feed intake fluctuation in limit-fed cattle might decrease performance early in the feeding period; however, cattle seem to adapt to fluctuating feed intake as the feeding period progresses. Time and frequency of feeding did not affect performance by limit-fed steers.  相似文献   

14.
This study was conducted to evaluate the accuracy of the National Research Council's (2000) Nutrient Requirements of Beef Cattle computer model when used to predict calf performance during on-farm pasture or dry-lot weaning and backgrounding. Calf performance was measured on 22 farms in 2002 and 8 farms in 2003 that participated in West Virginia Beef Quality Assurance Sale marketing pools. Calves were weaned on pasture (25 farms) or dry-lot (5 farms) and fed supplemental hay, haylage, ground shell corn, soybean hulls, or a commercial concentrate. Concentrates were fed at a rate of 0.0 to 1.5% of BW. The National Research Council (2000) model was used to predict ADG of each group of calves observed on each farm. The model error was measured by calculating residuals (the difference between predicted ADG minus observed ADG). Predicted animal performance was determined using level 1 of the model. Results show that, when using normal on-farm pasture sampling and forage analysis methods, the model error for ADG is high and did not accurately predict the performance of steers or heifers fed high-forage pasture-based diets; the predicted ADG was lower (P < 0.05) than the observed ADG. The estimated intake of low-producing animals was similar to the expected DMI, but for the greater-producing animals it was not. The NRC (2000) beef model may more accurately predict on-farm animal performance in pastured situations if feed analysis values reflect the energy value of the feed, account for selective grazing, and relate empty BW and shrunk BW to NDF.  相似文献   

15.
These studies evaluated the effects of betaine, provided either as feed-grade betaine or as concentrated separator by-product (CSB; desugared beet molasses), on performance and carcass characteristics of finishing cattle. In Exp. 1, 175 steers (410 kg initial BW) were fed a finishing diet based on steam-flaked and dry-rolled corn, and treatments included 10.5 and 21 g/d feed-grade betaine and 250 and 500 g/d CSB (supplying 15.5 and 31 g/d of betaine, respectively). Steers fed feed-grade betaine had greater (linear and quadratic effects, P < 0.1) DMI than control steers, but ADG and gain efficiencies were not affected by treatment. Dressing percent and backfat thickness was greater (P < 0.1) for steers that received feed-grade betaine than for controls. Longissimus muscle area was lower (P < 0.1) for steers supplemented with either feed-grade betaine or CSB than for control steers. Yield grades were higher for cattle receiving feed-grade betaine (quadratic effect, P < 0.1) than for control steers. Marbling scores were not affected by supplemental betaine, but the percentage of carcasses grading USDA Select was lower (linear and quadratic effects, P < 0.1) for steers fed feed-grade betaine than for control steers, predominantly due to a greater percentage grading USDA Choice. In Exp. 2, 312 heifers (343 kg initial BW) were used in a finishing study to evaluate the effects of graded levels of feed-grade betaine and peroxide-treated feather meal on performance and carcass characteristics. Treatments included two finishing diets (containing peroxide-treated or untreated feather meal) and four levels (0, 4, 8, and 12 g/d) of feed-grade betaine arranged in a 2 x 4 factorial. No significant interactions occurred between treatment of feather meal and betaine. Treatment of feather meal with hydrogen peroxide (5% wt/wt) increased in situ protein degradability but did not alter DMI, ADG, gain efficiencies, or carcass characteristics of heifers when it replaced untreated feather meal in the diet. Top-dressing feed-grade betaine to the diets had no effect on DMI, ADG, and gain efficiencies. Marbling scores were greater (cubic effect, P < 0.05) for heifers fed diets top-dressed with 4 and 12 g/d of feed-grade betaine, but other carcass characteristics were not altered significantly. Overall, feed-grade betaine and CSB did not alter growth performance, but did have minor effects on carcass characteristics.  相似文献   

16.
Six hundred ten crossbred-yearling heifers (347 +/- 5 kg of initial BW) were obtained and used in a randomized complete-block design finishing study. Finishing diets were based on steam-flaked corn and ground alfalfa hay. The control (CONT) treatment contained no distillers grains with solubles (DGS), the second diet was formulated to contained 13% (DM basis) dried corn DGS derived from a traditional dry-grind ethanol process (TRAD), and the third diet was formulated to contained 13% (DM basis) dried corn DGS derived from a partial fractionation dry-grind process (FRAC). Dry matter intake, ADG, and gain efficiency were not different (P >/= 0.48) for yearling heifers fed CONT when compared with heifers fed DGS. Heifers fed TRAD consumed more (P = 0.01) feed than heifers fed FRAC. However, ADG and feed efficiency were not different (P >/= 0.07) for heifers fed DGS. Moderate inclusion levels of DGS in finishing flaked corn diets yielded satisfactory performance. Growth performance was not different for heifers fed DGS originating from either ethanol processing method.  相似文献   

17.
Angus-crossbred steers (n = 216) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on finishing performance and carcass characteristics. During winter months (December to April) steers were randomly allotted to 3 stocker growth rates: low (0.23 kg x d(-1)), medium (0.45 kg x d(-1)), or high (0.68 kg x d(-1)). Upon completion of the winter phase, steers were randomly allotted within each stocker treatment to a corn silage-concentrate or pasture finishing system. All steers regardless of finishing treatment were finished to an equal-time endpoint to eliminate confounding of treatments with animal age or seasonal factors. Upon completion of the finishing period, steers were slaughtered in 2 groups (one-half of pasture and one-half of feedlot cattle each time) and carcass data were collected. Winter data were analyzed as a completely randomized design, with winter treatment, pen replicate, year, and the winter x year interaction in the model. Finishing performance and carcass data were analyzed in a split-plot design with finishing system in the whole plot, and winter growth rate and winter x finish in the split-plot. Winter treatment mean within finishing replication was the experimental unit, and year was considered a random effect. Winter stocker phase treatments resulted in differences (P < 0.001) in final BW, ADG, and ultrasound LM area between all treatments for that phase. Pasture-finished cattle had lower (P < 0.001) final BW, ADG, HCW, LM area, fat thickness, KPH, dressing percent, USDA yield grade, and USDA quality grade. Winter stocker treatment influenced (P < 0.05) final BW and HCW, with low and medium being less than high. Steers with low stocker gain had greater (P < 0.05) finishing ADG. Dressing percent was greater (P < 0.001) for high than low, and USDA quality grade was greater (P < 0.05) for high than low and medium. Carcass LM area, fat thickness, KPH, and USDA yield grade were not influenced (P > 0.05) by winter rate of gain. Cattle on low during winter exhibited compensatory gain during finishing but were unable to catch the high group regarding BW or HCW. The USDA quality grade was greater for high than low or medium. Animal performance during the winter stocker period clearly impacts finishing performance, carcass quality and beef production in both pasture- and feedlot-finishing systems, when cattle were finished to an equal-time endpoint.  相似文献   

18.
Two finishing trials, one laboratory trial and one metabolism trial were conducted with the following objectives: 1) to determine the associative effects of feeding high-moisture corn (HMC) with either dry-rolled grain sorghum (DRGS) or dry-rolled corn (DRC) and 2) to evaluate HMC when harvested at different moisture levels, stored in different structures, or fed as whole or rolled HMC. In Trial 1, yearling steers (BW, 328 kg) were fed diets containing mixtures of HMC and DRGS. As level (0, 33, 100%, as percentage of grain DM) of DRGS increased, ADG (P less than .03) and gain/feed (P less than .001) decreased linearly; gain/feed tended to be affected quadratically (P = .14). In Trial 2, yearling steers (BW, 382 kg) fed HMC, stored whole in an upright, oxygen-limiting silo and rolled coarsely before feeding, gained faster (1.46 vs 1.36 kg/d) and more efficiently (.142 vs. .131 gain/feed) than steers fed whole HMC (P less than .01). In Trial 3, as length of storage of bunker HMC increased, in vitro rate of starch digestion and soluble N content increased (20.4 and 36.8%, respectively) and grain pH decreased (10.9%). In Trial 4, steers fed HMC or a mixture of 75% HMC with 25% DRGS had similar ruminal pH throughout a grain adaptation period, but total ruminal VFA were greater (P less than .005) for steers fed HMC alone. These data are interpreted to suggest that feeding a mixture of HMC, ground and stored in a bunker or silo bag, with DRGS will result in a 3.2% associative effect. However, no associative effects were measured when a mixture of HMC, stored whole and fed whole or rolled, and DRC were fed.  相似文献   

19.
A 3-yr study was conducted with spring-born heifers (n = 240) to determine the effects of developing heifers to either 55 or 60% of mature BW at breeding on reproduction and calf production responses. A concurrent study was also conducted with summer-born heifers (n = 146) to examine effects of breeding heifers with the mature cow herd or 1 mo earlier on reproduction and calf production variables. Spring-born crossbred heifer calves were weaned and developed on two different levels of nutrition to achieve the desired prebreeding BW. Summer-born heifers were developed to similar target breeding BW (60% of mature BW) to begin calving either 1 mo before (May) or at the same time as the mature cowherd (June). Blood samples were taken before breeding to determine differences in estrous cyclicity. Pregnancy rates through the fourth pregnancy were determined. Cow and calf production variables were evaluated through the third gestation. Spring-born heifers reached 53 or 58% of mature BW at breeding and had similar reproduction and first calf production traits between the two, groups. Calving difficulty with the second calf was greater (P < 0.05) for heifers developed to 58% of mature BW at breeding. Subsequent second calf weaning weight and ADG were decreased (P < 0.05) for heifers developed to 58% of mature BW at breeding. Feed costs were $22/heifer less for heifers developed to 53% of mature BW. Summer-born first-calf heifers calving in June had less (P < 0.01) calving difficulty than did heifers calving in May; however, calf birth weights were similar. Breeding summer-born heifers 1 mo before the cowherd did not influence pregnancy rates over three calf crops; however, first calf adjusted weaning weights and ADG were greater for calves born earlier. Development costs were $11/heifer more for heifers developed to calve in May vs. June. Developing spring-born heifers to 53% of mature BW did not adversely affect reproduction or calf production traits compared with developing heifers to 58% of mature BW, and it decreased development costs. Breeding summer-born heifers before the cowherd increased heifer development costs, increased calving difficulty, and improved calf performance, but had no effect on pregnancy rates.  相似文献   

20.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号