首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly different from the natural or control treatments. The furrow and sand column treatments significantly increased the water application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments. Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural land is limited. Received: 19 October 1998  相似文献   

2.
The effects of irrigation methods, application rates and initial moisture content on soil water storage and surface runoff were studied in soils liable to surface crust formation during 1995–1996 at the University of Jordan Research Station near Al-Muwaqqar village. Four irrigation methods were tested (sprinkler, furrow, basin and trickle) and four application rates (6.2, 14.4, 24.4 and 28.4 mm/h). Two runs were performed (soil initially dry and soil initially wet). Basin irrigation provided the highest application efficiency followed by trickle, sprinkler and furrow irrigation methods. Entrapping water by the basin borders increased soil water storage by allowing more water to infiltrate through the surface crust. Decreasing the application rate from 28.4 to 6.2 mm/h increased soil water storage significantly in all 150 mm layers to a depth of 600 mm. If the soil was already wet, soil moisture storage decreased owing to siltation during the prewetting and formation of a surface crust and low soil water storage capacity. A sedimentary crust formed at the bottom of the furrows in the furrow irrigation treatment, which reduced soil water storage and increased surface runoff significantly owing to the reduction in infiltration. Increasing the application rate from 6.2 to 28.4 mm/h in the furrow surface irrigation treatment increased the runoff discharge 10-fold. Even with the lowest application rate the runoff coefficient under sprinkler irrigation was 20.3% indicating high susceptibility of Al-Muwaqqar soils to surface crust formation.  相似文献   

3.
The effects of supplemental irrigation and irrigation practices on soil water storage and barley crop yield were studied for a crust-forming soil at the University of Jordan Research Station near Al-Muwaqqar village during the 1996/97 growing season. An amount of 0.0, 48.9, 73.3, 122.2 and 167 mm supplemental irrigation water were applied. The 48.9, 73.3 and 122.2 mm applications were applied through surface irrigation into furrows with blocked ends, and the 0.0 and 167 mm applications via sprinkler irrigation. The greatest water infiltration and subsequent soil storage was achieved with the 122.2 mm application followed by the 73.3 mm irrigation, both surface applied. Application efficiency (the fraction of applied water that infiltrated into the soil and stored in the 600 mm soil profile) and soil water storage associated with supplemental blocked furrow irrigation was significantly greater than with supplemental sprinkler irrigation. For arid zone soil, which has little or no structural stability, application of supplemental irrigation water via short, blocked-end furrows prevents runoff and increases the opportunity time for infiltration, thereby increasing the amount of applied water that is infiltrated into the soil and stored in the soil profile. Supplemental irrigation, applied by a low-rate sprinkler system, was not as effective because of the low infiltration rates that resulted from the development of a surface throttle due to dispersion of soil aggregates at the soil surface. The differences in stored water had a significant effect on grain and straw yields of barley. Without supplemental irrigation, barley grain and straw yields were zero in natural rainfall cultivation with a total rainfall of 136.5 mm. Barley yields in the control treatment, with a 167 mm supplemental sprinkler irrigation were low being 0.19 and 1.09 ton/ha of barley grain and straw, respectively. Supplemental irrigation through blocked-end furrows increased barley grain and straw yields significantly compared with supplemental sprinkler irrigation to a maximum of 0.59 and 1.8 ton/ha, respectively. The improvement coming from the increased water storage associated with furrows. Since irrigation water is very limited if available, farmers are encouraged to form such furrows for reducing runoff from rainfall thereby increasing the amount of water available for forage and field crop production.  相似文献   

4.
Infiltration rate measurements in arid soils with surface crust   总被引:6,自引:0,他引:6  
The effects of infiltrometer type and water application rate on infiltration were studied for a crust-forming soil at the University of Jordan Research Station near Al-Muwaqqar village. The total amount of water applied in all cases was 38 mm. The highest infiltration rate values occurred in basin infiltrometers followed by sprinkler and furrow infiltrometers. The infiltration rate at the end of water application decreased significantly by 41–57% with decreasing application rate from 28.4 to 6.2 mm/h regardless of infiltrometer type. Increasing the initial soil moisture content decreased the infiltration rate by about 4–11% in all infiltrometer types and application rates. In the basin infiltrometer, lateral water movement occurred all around the basin borders, thus increasing the measured basic infiltration rate. In the furrow infiltrometer, the formation of a sedimentary crust on the furrow bottom reduced the basic water infiltration rate to 3.6 mm/h. The wetted zone formed with the sprinkler infiltrometer reduced lateral water movement, and the measured basic infiltration rate was close to the basic infiltration rate measured by the double-ring infiltrometer. The measurements were used to establish infiltration rate curves and equations. In a second experiment, the Stirk correction significantly reduced the water lateral divergence factor by 27.1% in single-ring infiltrometers. The Stirk correction factor was different in single- and double-ring infiltrometers. Thus, the basic infiltration rate was 4.8 and 3.5 mm/h using the single and the double infiltrometers, respectively, while the corresponding correction factors were 0.67 and 0.91, respectively. The corrected infiltration rate was only 3.2 mm/h, which confirms the tendency of these crusted soils to generate huge runoff at even small application rates. Received: 27 September 1997  相似文献   

5.
对不同地面灌水技术进行优化组合应用,根据全年作物连作的需水特点实施调亏灌溉使土壤水分消长过程在节水高产调控范围内,提高了水分效应,小麦和棉花水分生产效率达1.53kg/m3和0.41kg/m3的较高水平。同时还对其节水高产机理进行了探讨,为节水高产的地面灌水技术优化组合应用提供了科学依据。  相似文献   

6.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

7.
To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube was obtained, and R2 was more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube diameter has a nonsignificant effect on the emitter discharge. Changes in the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge was 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, thus achieving continuous irrigation, in order to achieve the effect of water-saving.  相似文献   

8.
The effect of sprinkler irrigation uniformity on crop yield is an important consideration for the design of sprinkler irrigation system. A model that relates yield response to evapotranspiration deficits at special growth stages to evaluate the impacts of uniformity on crop yield was developed from a crop water production function. The simulation results of the model showed that crop yield increased with increasing uniformity. Optimum irrigation amount and uniformity for the maximum net return were determined with the model. The optimum irrigation amount depends on irrigation uniformity and on economic factors, decreasing with the uniformity but increasing with the ratio of product price to water cost. The optimum uniformity increased with an increase of irrigation amount expressed by a ratio between gross and required irrigation amount, but approximated 90% when the ratio exceeded 0.85. Field experiments conducted to study the relationship between spatial distribution of soil moisture and sprinkler application uniformity demonstrated that the water in the soil was more uniformly distributed than that measured for the application at the soil surface.  相似文献   

9.
The effects of high temperature stress and supplemental irrigation on seed yield and water use efficiency (WUE) of canola (Brassica napus L.) were studied in a field experiment conducted for 2 years. The experiment was a randomized complete block design arranged in split plot, conducted at Agricultural Research Station of Gonbad, Iran. It was arranged in two conditions, i.e. supplemental irrigation and rainfed. Two cultivars of canola (Hyola401 and RGS003) as subplots were grown at five sowing dates as main plots. The sowing dates were 9 November, 6 December, 5 January, 4 February and 6 March in 2005-2006 and 6 November, 6 December, 5 January, 4 February and 6 March in 2006-2007, to have a wide range of environmental conditions around flowering and seed filling periods, and to coincide reproductive stages of the crop with high temperature stress. Seed yield was improved due to field management practices, such as supplemental irrigation and optimum sowing date. Supplemental irrigation was an efficient practice to mitigate water stress, and to increase aboveground dry matter and seed yield. There was a strongly negative relationship between seed yield and air temperature during reproductive stages. Delay in sowing led to more rapid developmental of canola, decreased aboveground dry matter, leaf area index (LAI), harvest index (HI), WUE, and seed yield. Achieving a high aboveground dry matter was an essential prerequisite for high reproductive growth and a high seed yield. Greater seed yield and WUE at first sowing date were associated with greater LAI and aboveground dry matter, and lower temperatures during reproductive stages. The results support the view that WUE can be used as an indirect selection criterion for seed yield in genotypic selection.  相似文献   

10.
Water use efficiency and yield of barley were determined in a field experiment using different irrigation waters with and without nitrogen fertilizer on a sandy to loamy sand soil during 1994–1995 and 1995–1996. Depending upon different fertilizer treatments, the overall mean crop yield ranges for two crop seasons were: greenmatter from 19.48–55.0 Mg ha−1 (well water) and 21.92–66.5 Mg ha−1 (aquaculture effluent); drymatter from 6.86–20.69 Mg ha−1 (well water) and 7.87–20.90 Mg ha−1 (aquaculture effluent); biomass from 4.12–21.31 Mg ha−1 (well water) and 8.10–19.94 Mg ha−1 (aquaculture effluent) and grain yield from 2.12–5.50 Mg ha−1 (well water) and 3.25–7.25 Mg ha−1 (aquaculture effluent). The WUE for grain yield was 3.37–8.74 kg ha−1 mm−1 (well water) and 5.17–11.53 kg ha−1 mm−1 (aquaculture effluent). The WUE for total biomass ranged between 6.55–33.88 kg−1 ha−1 mm−1 (well water) and 12.88–31.70 kg ha−1 mm−1 (aquaculture effluent). The WUE for drymatter was 10.91–32.90 kg ha−1 mm−1 (well water) and 12.51–33.22 kg ha−1 mm−1 (aquaculture effluent). It was found that grain yield and WUE obtained in T-4 and T-5 irrigated with well water and receiving 75 and 100% nitrogen requirements were comparable with T-4 and T-5 irrigated with aquaculture effluent and receiving 0 and 25% nitrogen requirements. In conclusion, application of 100 to 150 kg N ha−1 for well water and up to 50 kg N ha−1 for aquaculture effluent irrigation containing 40 Mg N l−1 would be sufficient to obtain optimum grain yield and higher WUE of barley in Saudi Arabia.  相似文献   

11.
Verification of the model of potential yield developed by De Wit and modified by Rijtema, Feddes et al. and others, was carried out for two varieties of potato grown under different water and fertilization conditions. The anticipated yields were found to be correlated with the measured ones at the 0.99 confidence level, evidenced by correlation coefficients from 0.96 to 0.97. This means that for a given potato variety and under determined water and fertilization conditions the yield can be forecasted with the model.  相似文献   

12.
干旱区秸秆覆盖对滴灌棉花生长及产量的影响   总被引:2,自引:0,他引:2  
为探索秸秆覆盖对北疆滴灌棉花生长特征和产量的影响,2009—2012年期间,以小麦秸秆为材料,在非盐碱土和盐碱土2种土壤条件下,进行了无覆盖(LUM)、表层覆盖(LSM)、地表以下30 cm深处覆盖(LM30)的测坑对比试验.结果表明:秸秆覆盖对棉花生长及产量具有一定的促进效果,对盐碱土种植的棉花株高、叶面积指数和产量的促进作用显著,而对非盐碱土棉花株高、叶面积指数和产量的促进作用不明显.地表覆盖综合调控效应优于30 cm深层覆盖,尤其是在棉花花铃期,在盐分抑制方面地表覆盖要比30 cm覆盖效果好;30 cm覆盖在苗期和蕾期可以给棉花生长创造比较好的条件,而在花铃期以后这种覆盖效果不太明显;表层覆盖处理棉花产量最高,高出无覆盖处理3.2%-17.9%,高出30 cm深层覆盖3.1%-16.3%.  相似文献   

13.
Camelina sativa (L.) Crantz is a promising, biodiesel-producing oilseed that could potentially be implemented as a low-input alternative crop for production in the arid southwestern USA. However, little is known about camelina’s water use, irrigation management, and agronomic characteristics in this arid environment. Camelina experiments were conducted for 2 years (January to May in 2008 and 2010) in Maricopa, Arizona, to evaluate the effectiveness of previously developed heat unit and remote sensing basal crop coefficient (K cb ) methods for predicting camelina crop evapotranspiration (ET) and irrigation scheduling. Besides K cb methods, additional treatment factors included two different irrigation scheduling soil water depletion (SWD) levels (45 and 65 %) and two levels of seasonal N applications within a randomized complete block design with 4 blocks. Soil water content measurements taken in all treatment plots and applied in soil water balance calculations were used to evaluate the predicted ET. The heat-unit K cb method was updated and validated during the second experiment to predict ET to within 12–13 % of the ET calculated by the soil water balance. The remote sensing K cb method predicted ET within 7–10 % of the soil water balance. Seasonal ET from the soil water balance was significantly greater for the remote sensing than heat-unit K cb method and significantly greater for the 45 than 65 % SWD level. However, final seed yield means, which varied from 1,500 to 1,640 kg ha?1 for treatments, were not significantly different between treatments or years. Seed oil contents averaged 45 % in both years. Seed yield was found to be linearly related to seasonal ET with maximum yield occurring at about 470–490 mm of seasonal ET. Differences in camelina seed yields due to seasonal N applications (69–144 kg N ha?1 over the 2 years) were not significant. Further investigations are needed to characterize camelina yield response over a wider range of irrigation and N inputs.  相似文献   

14.
Summary Standard local practice in Northern India is to continue irrigation of winter wheat crop almost up to harvest, based on the farmer's belief that this treatment increases grain weight and yield. The effect of an early cut-off of irrigation on the water use was studied in a three-year experiment on a deep, sandy-loam soil.Wheat, sown during the second or third week of November, received its first irrigation four weeks later. Subsequently treatments included irrigations of 7.5 cm water depth applied after 10 cm of cumulative pan evaporation minus rainfall had elapsed since the previous irrigation up till mid-April; irrigations of 7.5 cm up till mid-February and thereafter irrigation equal to 75 and 100% soil-water deficit in the 0–180 cm profile around March 10 with no later irrigation; and a similar treatment with one additional irrigation after making up the water deficit.Least irrigation water was used from the treatment in which 75% water deficit was restored around March 10 and no further irrigation was applied. This treatment increased the average extraction of profile water by 4 cm compared to treatments in which irrigation was continued until mid-April. Profile water depletion was inversely related to the amount of irrigation. Grain weight and yields from the various treatments harvested in the last week of April were unaffected by the treatments.The authors are grateful to the ICAR for financing this research  相似文献   

15.
为了探明降解膜在哈密盆地滴灌棉花种植的应用效果,选取降解膜M1,M2,M3,M4及普通塑料地膜PE(CK)开展对照试验,研究降解膜的降解性能及其对滴灌棉花土壤水热变化与产量的影响.结果表明:M2在覆膜80 d左右最早出现降解、180 d左右进入残存期,生育期末仍有小块地膜残片存在;而降解膜M1与M3于生育期末才进入崩解...  相似文献   

16.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

17.
The Central Anatolian Plateau of Turkey is a typical cool highland rainfed wheat area with an annual rainfall of 300–500 mm. Due to suboptimal seasonal rainfall amounts and distribution, wheat yields in the region are low and fluctuate substantially over seasons. Delayed sowing due to late rainfall affects early crop establishment before winter frost and causes substantial reduction in yield. A 4-year field study (1998/1999 to 2001/2002) was carried out at Ankara Research Institute of Rural Services to assess the impact of early sowing with supplemental irrigation (SI) and management options during other dry spells on the productivity of a bread wheat cultivar, “Bezostia”. Treatments included early sowing with 50 mm irrigation and normal sowing with no irrigation as main plots. Four spring (SI) levels occupied the sub-plots. These are rainfed (no-irrigation), full irrigation to sature crop water requirements and two deficit irrigation levels of 1/3 and 2/3 at the full irrigation treatments.Results showed that early establishment of the crop, using 50 mm of irrigation water at sowing, increased grain yield by over 65% and adding about 2.0 t/ha to the average rainfed yield of 3.2 t/ha. Early sowing with SI allowed early crop emergence and development of good stand before being subjected to the winter frost. As a result, the crop used rainwater more efficiently. Additional supplemental irrigation in the spring also increased yield significantly. Grain yields of 5120, 5170 and 5350 kg/ha were obtained by applying 1/3, 2/3 and full SI, respectively. The mean productivity of irrigation water given at sowing was 3.70 kg/m3 with maximum value of 4.5 kg/m3. Water productivity of 1/3, 2/3 and full SI were 2.39, 1.46 and 1.27 kg/m3, respectively, compared to rainwater productivity of 0.96 kg/m3.  相似文献   

18.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

19.
Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on yield, irrigation water use efficiency (iWUE) and root distribution of tomato cultivated in a plastic mulched/drip irrigated production systems. Experimental treatments included three irrigation scheduling regimes and three N-rates (176, 220 and 230 kg ha−1). Irrigation treatments included were: (1) SUR (surface drip irrigation) both irrigation and fertigation line placed right underneath the plastic mulch; (2) SDI (subsurface drip irrigation) where the irrigation line was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with irrigation and fertigation lines placed as in SUR and irrigation being applied once a day. Except for the “TIME” treatment all irrigation treatments were controlled by soil moisture sensor (SMS)-based irrigation set at 10% volumetric water content which was allotted five irrigation windows daily and bypassed events if the soil water content exceeded the established threshold. Average marketable fruit yields were 28, 56 and 79 Mg ha−1 for years 1-3, respectively. The SUR treatment required 15-51% less irrigation water when compared to TIME treatments, while the reductions in irrigation water use for SDI were 7-29%. Tomato yield was 11-80% higher for the SUR and SDI treatments than TIME where as N-rate did not affect yield. Root concentration was greatest in the vicinity of the irrigation and fertigation drip lines for all irrigation treatments. At the beginning of reproductive phase about 70-75% of the total root length density (RLD) was concentrated in the 0-15 cm soil layer while 15-20% of the roots were found in the 15-30 cm layer. Corresponding RLD distribution values during the reproductive phase were 68% and 22%, respectively. Root distribution in the soil profile thus appears to be mainly driven by development stage, soil moisture and nutrient availability. It is concluded that use of SDI and SMS-based systems consistently increased tomato yields while greatly improving irrigation water use efficiency and thereby reduced both irrigation water use and potential N leaching.  相似文献   

20.
A field trial on a loamy sand soil was carried out to study the effect of three irrigation waters with different qualities on growth and yield of ‘Gesto’, a barley (Hordeum vulgare L.) cultivar. Three irrigation water quality treatments (canal irrigation water, drainage water, and mixed canal and drainage waters at 1:1 ratio) were imposed with two irrigation frequencies (I and 2 week intervals). In addition, nitrogen and phosphorus fertilizers were applied at different rates. Barley grain and straw yields were significantly decreased under the use of drainage water (EC 10.7–16.7 dS m−1), attributed mainly to reduction in the number of spikes per plant and grain weight. The mixed irrigation water (EC 6.8–9.9 dS m−1) produced high seedling emergence and good vegetative growth, which was followed by high grain and straw yields. These yields were not significantly different from those under fresh canal irrigation water (EC 2.8–3.9 dS m−1). Thus, mixed water could be another alternative for irrigation under similar experimental conditions especially with high rates of nitrogen (250–350 kg ha−1) and phosphorus (90 kg ha−1) fertilization at weekly irrigation intervals, which could eventually save more fresh irrigation canal water for other cultivated crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号