共查询到18条相似文献,搜索用时 93 毫秒
1.
基于卷积神经网络的奶牛发情行为识别方法 总被引:6,自引:0,他引:6
对奶牛发情的及时监测在奶牛养殖中至关重要。针对现有人工监测奶牛发情行为费时费力、计步器接触式监测会产生奶牛应激行为等问题,根据奶牛发情的爬跨行为特征,提出一种基于卷积神经网络的奶牛发情行为识别方法。构建的卷积神经网络通过批量归一化方法提高网络训练速度,以Max-pooling为下采样,修正线性单元(Rectified linear units,Re LU)为激活函数,Softmax回归分类器为输出层,结合理论分析和试验验证,确定了32×32-20c-2s-50c-2s-200c-2的网络结构和参数。经过对奶牛活动区50头奶牛6个月的视频监控,筛选了具有发情行为爬跨特征的视频150段,随机选取网络训练数据23 000幅和测试数据7 000幅,对构建的网络进行了训练和测试。试验结果表明:本文方法对奶牛发情行为识别准确率为98. 25%,漏检率为5. 80%,误识别率为1. 75%,平均单幅图像识别时间为0. 257 s。该方法能够实现奶牛发情爬跨的无接触实时监测,对奶牛发情行为具有较高的识别率,可显著提高规模化奶牛养殖的管理效率。 相似文献
2.
针对自然环境下马铃薯叶片病害识别率低和晚疫病斑定位难的问题,基于大田环境中采集的马铃薯叶片图像,首先对马铃薯叶片病害进行识别,对比AlexNet、VGG16、InceptionV3、ResNet50、MobileNet五种神经网络模型,结果表明InceptionV3模型的识别效果准确率最高,可达98.00%。其次对马铃薯叶片的晚疫病斑进行检测,提出一种改进型的CenterNet-SPP模型,该模型通过特征提取网络获取对象的中心点,再通过中心点回归获得中心点偏移量、目标大小等图像信息,训练后的模型在验证集下的mAP可达90.03%,以F1为评价值分析对比其它目标检测模型,CenterNet-SPP模型的效果最好,准确率为94.93%,召回率为90.34%,F1值为92.58%,平均检测一张图像耗时0.10 s。为自然环境下马铃薯叶片病害识别和检测提供较为全面的深度学习算法和模型研究基础。 相似文献
3.
基于迁移学习的卷积神经网络玉米病害图像识别 总被引:17,自引:0,他引:17
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在Image Net图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95. 33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。 相似文献
4.
在种鸡养殖和管理过程中,借助非接触式、连续的声音检测手段和智能化设备,饲养员可以全面了解蛋鸡的健康状况以及个体需求,为提高生产效率并同时改善种鸡福利化养殖,提出了一种基于轻量级卷积神经网络的种鸡发声分类识别方法,以海兰褐种鸡为研究对象,收集种鸡舍内常见的5类声音,再将其声音一维信号转换为二维图像信号,利用卷积神经网络建立轻量级的深度学习模型,80%数据进行训练,20%数据进行测试,该模型实现了动物声音信号从输入端到识别结果输出端的高效检测。对比已有研究,本文方法对种鸡舍内常见的5类声音识别整体准确率提高3.7个百分点。试验结果表明,该方法平均准确率为95.7%,模型对饮水声、风机噪声、产蛋叫声识别召回率均达到100%,其中风机噪声和产蛋叫声精确率和F1值也均达到100%,而应激叫声召回率最低,为88.3%。本研究可为规模化无人值守鸡舍的智能装备研发提供一定理论参考。 相似文献
5.
为快速、准确识别马铃薯芽眼,提高种薯发芽率,提出一种基于卷积神经网络的马铃薯芽眼识别方法。针对多视角和不同程度重叠的马铃薯芽眼图像,通过数据增广及图像预处理建立数据库。在此基础上,利用YOLOv3网络的高性能特征提取特性,实现马铃薯芽眼的快速准确识别。结果表明:YOLOv3网络对含有单个无遮挡芽眼的样本、含有多个有遮挡芽眼的样本及含有机械损伤、虫眼及杂质的样本均能够实现良好稳定的识别,最终检测精确度P为97.97%,召回率R为96.61%,调和平均值F1为97%,识别平均精度mAP为98.44%,单张检测时间为0.018 s。对比分析YOLOv4-tiny及SSD等网络后可知,YOLOv3模型可同时满足马铃薯芽眼识别的精度与速度要求。因此,YOLOv3网络对马铃薯芽眼识别具有良好的鲁棒性,为马铃薯切种机实现自动化切种奠定基础。 相似文献
6.
为解决自然状态下成熟草莓存在的背景干扰、信息丢失等问题,提出一种基于深度残差学习的草莓识别方法。首先,引入深度可分离卷积降低残差网络参数,从不同角度提取成熟草莓特征,通过交叉熵损失函数来识别分类层中的草莓。其次,嵌入压缩和激励模块学习特征权重,使用特征重新校准改善网络的学习和表征属性。最后,采用添加空间金字塔池化、加权衰减优化方法提高模型的泛化能力,优化识别结果。试验结果表明,和现有其他深度模型相比,该方法能够有效地定位复杂背景下的成熟草莓,不易受到干扰环境的影响,具有更高的识别准确率和灵敏度,在数据集C中的识别准确率和灵敏度最高,分别达到92.46%和94.28%。 相似文献
7.
8.
基于卷积神经网络的大白母猪发情行为识别方法研究 总被引:2,自引:0,他引:2
针对现有发情检测方法灵敏度低、识别时间长、易受外界干扰等缺点,根据大白母猪试情时双耳竖立的特征,提出一种基于卷积神经网络(Convolutional neural network, CNN)的大白母猪发情行为识别方法。首先通过采集公猪试情时发情大白母猪与未发情大白母猪的耳部图像,划分训练集样本(80%)与验证集样本(20%)用于后期训练。随后,基于AlexNet卷积神经网络构建分类模型(AlexNet_Sow),并对该模型的网络结构进行简化,简化后的模型包含2个卷积模块和2个全连接模块,选择修正线性单元(Rectified linear units, ReLU)作为激活函数,用自适应矩估计(Adaptive moment estimation, Adam)方法优化梯度下降,选择Softmax作为网络分类器,通过结合增强学习的方法对模型进行训练,得到模型应用于验证集的准确率达到99%。此外,设定了发情鉴定的时间阈值,并结合LabVIEW的Python节点用于模型应用。当公猪试情时,大白母猪双耳竖立时长达到76s时,则可判定其为发情。该方法对大白母猪发情识别的精确率、召回率与准确率分别为100%、83.33%、93.33%,平均单幅图像的检测时间为26.28ms。该方法能够实现大白母猪发情的无接触自动快速检测,准确率高,大大降低了猪只应激情况和人工成本。 相似文献
9.
利用卷积神经网络等图像处理技术研究识别作物病虫害是农业智能化未来发展的必然趋势,具有识别速度快、精度高等优点。综述了卷积神经网络的几种经典模型及其分别在农作物病虫害识别领域的应用成果;讨论了卷积神经网络在农业病虫害识别领域的局限性和发展趋势,以期更有利于卷积神经网络技术更好地帮助农业进步和经济发展。 相似文献
10.
肉牛活动过程中所表现出的行为是肉牛健康状况的综合体现,实现肉牛行为的快速准确识别,对肉牛疾病防控、自身发育评估和发情监测等具有重要作用。基于机器视觉的行为识别技术因其无损、快速的特点,已应用在畜禽养殖行为识别中,但现有的基于机器视觉的肉牛行为识别方法通常针对单只牛或单独某个行为开展研究,且存在计算量大等问题。针对上述问题,本文提出了一种基于SNSS-YOLO v7(Slim-Neck&Separated and enhancement attention module&Simplified spatial pyramid pooling-fast-YOLO v7)的肉牛行为识别方法。首先在复杂环境下采集肉牛的爬跨、躺卧、探究、站立、运动、舔砥和互斗7种常见行为图像,构建肉牛行为数据集;其次在YOLO v7颈部采用Slim-Neck结构,以减小模型计算量与参数量;然后在头部引入分离和增强注意力模块(Separated and enhancement attention module, SEAM)增强Neck层输出后的检测效果;最后使用SimSPPF(Simplified ... 相似文献
11.
基于FTVGG16卷积神经网络的鱼类识别方法 总被引:3,自引:0,他引:3
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。 相似文献
12.
针对多机协同导航作业中本机前方的拖拉机识别精度低、相对定位困难,难以保障自主作业安全的问题,提出了一种基于深度图像和神经网络的拖拉机识别与定位方法。该方法通过建立YOLO-ZED神经网络识别模型,识别并提取拖拉机特征;运用双目定位原理计算拖拉机相对本机的空间位置坐标。对拖拉机进行定点识别与定位试验,分别沿着拖拉机纵向、宽度方向和S形曲线方向测量拖拉机的识别与定位结果。试验结果表明:本文方法能够在3~10m景深范围内快速、准确地识别并定位拖拉机的空间位置,平均识别定位速度为19f/s;在相机景深方向和宽度方向定位拖拉机的最大绝对误差分别为0.720m和0.090m,最大相对误差分别为7.48%和8.00%,标准差均小于0.030m,能够满足多机协同导航作业对拖拉机目标识别的精度和速度要求。 相似文献
13.
城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张卷积模块和一个非局部特征提取模块,前者能够聚合多层级空间特征以适应城中村形状、尺度的变异性;后者用于提取全局语义特征以提高城中村的类间可分性。选取北京市二环与六环之间的区域作为研究区,实验结果表明本文模型取得了较好的识别效果,总体精度可达94.27%,Kappa系数为0.8839,且效果优于传统模型。本文研究表明,基于多尺度扩张卷积神经网络进行城中村遥感识别是可行且有效的,可为城乡统筹规划提供精确的城中村空间分布数据。 相似文献
14.
针对核桃生产线的异物检测需求,首先根据现有通用的核桃加工生产线结构特点,设计并搭建了一套核桃异物检测装备,该装备包括设备框架、图像采集系统和恒定光源系统,整体尺寸为470 mm×600 mm×615 mm。然后以浙江省杭州市核桃生产基地的核桃和实际生产加工中出现的树叶、树枝、石子、金属、塑料等异物为检测对象,通过工业相机实时采集生产线上的核桃图像,获取直观的图像信息数据。结合了深度学习与计算机视觉技术,利用基于全卷积神经网络(Fully convolutional networks, FCN)的算法进行图像边缘检测,对核桃生产加工中可能出现的异物进行了检测,并通过试验对其性能加以验证。结果表明,训练集检测准确率为92.75%,验证集准确率为90.35%,检测速率为4.28 f/s,满足生产线运输速度1 m/s的检测要求。该研究即使在样本量较少的情况下,仍然得到了较好的图像分割效果,可以实现核桃生产线的异物实时检测。 相似文献
15.
基于卷积神经网络的无人机遥感农作物分类 总被引:3,自引:0,他引:3
针对采用长时间序列卫星影像、结合物候特征进行农作物精细分类识别精度较低的问题,将深度学习用于无人机遥感农作物识别,提出一种基于卷积神经网络的农作物精细分类方法,利用卷积神经网络提取高分辨率遥感影像中的农作物特征,通过调整网络参数及样本光谱组合,进一步优化网络结构,得到农作物识别模型。研究结果表明:卷积神经网络能够有效地提取影像中的农作物信息,实现农作物精细分类。除地块边缘因农作物种植稀疏、混杂而产生少许错分现象外,其他区域均得到较好的分类效果。经训练优化后的模型对3种农作物总体分类精度可达97.75%,优于SVM、BP神经网络等分类算法。 相似文献
16.
基于自适应卷积神经网络的染病虾识别方法 总被引:1,自引:0,他引:1
针对南美白对虾样本来源多样导致的泛化效果较差的问题,引入香农信息论构造不同来源样本的特征差异模型,以深度卷积神经网络(DCNN)为识别框架基础,依据多源样本组成的数据集在分类前后呈现的熵减规则计算DCNN中的网络超参数,消解数据集从随机输入到规则输出的信息熵,打破数据类型从三维输入到一维输出的熵变动,实现图像数据由高维空间向低维空间的映射,获取DCNN中关于超参数和网络深度的自适应优化策略,以提高识别不同来源染病虾的泛化效果。实验结果表明,所提方法在单个数据集上的识别精度最高可达97.96%,并在其他4个图像数据集上进行了测试泛化,泛化精度下降幅度小于5个百分点。 相似文献
17.
基于卷积神经网络的冬小麦麦穗检测计数系统 总被引:7,自引:0,他引:7
为进一步提高大田环境下麦穗识别与检测计数的准确性,基于图像处理和深度学习技术,设计并实现了基于卷积神经网络的冬小麦麦穗检测计数系统。根据大田环境下采集的开花期冬小麦图像特点,提取麦穗、叶片、阴影3类标签图像构建数据集,研究适用于冬小麦麦穗识别的卷积神经网络结构,构建了冬小麦麦穗识别模型,并采用梯度下降法对模型进行训练;将构建的冬小麦麦穗识别模型与非极大值抑制结合,进行冬小麦麦穗计数。试验结果表明,该系统构建的冬小麦麦穗识别模型能够有效地克服大田环境下的噪声,实现麦穗的快速、准确识别,总体识别正确率达到99. 6%,其中麦穗识别正确率为99. 9%,阴影识别正确率为99. 7%,叶片识别正确率为99. 3%。对100幅冬小麦图像进行麦穗计数测试,采用决定系数和归一化均方根误差(NRMSE)进行正确率定量评价,结果表明,该系统计数结果与人工计数结果线性拟合的R~2为0. 62,NRMSE为11. 73%,能够满足冬小麦麦穗检测计数的实际要求。 相似文献
18.
基于改进卷积神经网络的在体青皮核桃检测方法 总被引:1,自引:0,他引:1
采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利用双线性插值法改进RPN结构和构建混合损失函数等方式改进模型的适应性,分别采用SGD和Adam优化算法训练模型,并与未改进的Faster R-CNN对比。以精度、召回率和F1值作为模型的准确性指标,单幅图像平均检测时间作为速度性能评价指标。结果表明,利用Adam优化器训练得到的模型更稳定,精度高达97.71%,召回率为94.58%,F1值为96.12%,单幅图像检测耗时为0.227s。与未改进的Faster R-CNN模型相比,精度提高了5.04个百分点,召回率提高了4.65个百分点,F1值提升了4.84个百分点,单幅图像检测耗时降低了0.148s。在园林环境下,所提方法的成功率可达91.25%,并且能保持一定的实时性。该方法在核桃识别检测中能够保持较高的精度、较快的速度和较强的鲁棒性,能够为机器人快速长时间在复杂环境下识别并采摘核桃提供技术支撑。 相似文献