首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a disposable electrochemical immunosensor, based on a competitive assay scheme, was applied to detect polychlorinated biphenyls (PCBs) in food. For this purpose, antibodies against PCBs were directly immobilized onto the carbon surface of a disposable screen-printed electrode. A competition between the PCBs present in the sample and a fixed concentration of an enzyme-labeled PCB was realized and evaluated by electrochemical detection. Alkaline phosphatase was used as the enzyme label, coupled with differential pulse voltammetry (DPV) as the electrochemical technique. The immunosensor was tested on aroclor mixture detection (1242 and 1248) and then on some typologies of food samples to evaluate the possible application for real sample analysis. Samples analyzed were from different matrixes, such as sheep milk, bovine adipose tissue, and bovine muscle. Results obtained were compared with the accredited results according to ISO 17025 methods for PCB detection (HRGC-LRMS) as a confirmatory analysis. Preliminary results show the possibility to use this device as a screening method in food sample analysis. The negligible matrix effect observed may lead to a simplified extraction procedure, and considerable time and consumable savings are the immediate benefits given by the proposed method.  相似文献   

2.
Moniliformin is a mycotoxin produced by fungi of the Fusarium genus and occurs as a contaminant of different cereals worldwide. This study describes the first application of isotopically labeled (13)C(2)-moniliformin for the analysis of moniliformin in cereals. Moniliformin is a small and ionic molecule that forms only a single sensitive fragment ion in the collision cell of a tandem mass spectrometer. Therefore, the methods described in the literature for this kind of instrument observe only a single mass transition and show a relatively poor sensitivity. The use of high-resolution mass spectrometry was described to be a suitable alternative technique for the detection of this compound and was therefore applied in this study. The developed method is based on the use of strong anion exchange columns for cleanup prior to HPLC analysis and has a recovery rate of 75.3%, a limit of detection (LOD) of 0.7 μg/kg, and a limit of quantitation (LOQ) of 2.5 μg/kg. Twenty-three different cereal samples were analyzed for their moniliformin content. Twenty of them showed positive results with levels up to 126 ± 12.2 μg/kg.  相似文献   

3.
beta-Casein was quantified in milk and cheese, using an optical immunosensor, based on surface plasmon resonance (SPR) measurement. The assay consists of a two-step sandwich strategy, with two anti-beta-casein antibodies directed against each extremity of the casein. This strategy permits only native beta-casein to be quantified and not its degradation products. The calibration curve was obtained with a reference milk powder of known beta-casein concentration. The analysis time per sample was less than 10 minutes. The antibody-coated surface could be used for more than 250 determinations. The detection limit was established at 85 ng x mL(-)(1) and the intra- and inter-assay variation coefficients were 2.6 and 6.2% respectively. The method was applied to raw milk to quantify intact beta-casein, with no pretreatment of the sample. A second application was realized with cheese, to follow the proteolysis of beta-casein during ripening.  相似文献   

4.
Because of its pronounced estrogenicity, zearalenone may be of concern not only in the aqueous but also in the terrestrial environment. Therefore, we developed several analytical methods to quantify zearalenone in different solid matrices of agroenvironmental relevance (i.e., plant organs, soil, manure, and sewage sludge). The use of D(6)-zearalenone as the internal standard (IS) was essential to render the analytical method largely matrix-independent because it compensated for target analyte losses during extract treatment and ion suppression during ionization. Soil and sewage sludge samples were extracted with Soxhlet, whereas plant material and manure samples were extracted by liquid solvent extraction at room temperature. Absolute recoveries for zearalenone were 70-104% for plant materials, 105% for soil, 76% for manure, and 30% for sewage sludge. Relative recoveries ranged from 86 to 113% for all matrices, indicating that the IS was capable to largely compensate for losses during analysis. Ion suppression, between 8 and 74%, was in all cases compensated by the IS but influenced the method quantification levels. These were 3.2-26.2 ng/g(dryweightdw) for plant materials, 0.7 ng/g(dw) for soil, 12.3 ng/g(dw) for manure, and 6.8 ng/g(dw) for sewage sludge. Plant material concentrations varied from 86 ng/g(dw) to more than 16.7 microg/g(dw), depending on the organ and crop. Soil concentrations were between not detectable and 7.5 ng/g(dw), depending on the sampling depth. Zearalenone could be quantified in all manure samples in concentrations between 8 and 333 ng/g(dw). Except for two of the 85 investigated sewage sludge samples, zearalenone concentrations were below quantification limit.  相似文献   

5.
The present paper describes a sensitive procedure for quantitative analysis of the Fusarium mycotoxins zearalenone and alpha-zearalenol in urine of ruminants. Extraction is done with an octadecyl (C18) column and cleanup with a silica column providing a preparation that is analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The trimethylsilyl ether derivatives of zearalenone and alpha-zearalenol yield molecular ions with m/z 462 and 536, respectively. These ions are selected in the first mass analyzer and then fragmented in a collision cell to give characteristic daughter ions (m/z 151, 333, 318, and 446). The method is known as multiple reaction monitoring (MRM). Elimination of chemical background noise by selecting proper fragment ions produces chromatograms in which identification and quantitation in a biological matrix is possible. The method was tested with sheep urine from an experimental feeding trial and was used to confirm natural mycotoxicosis of cows affected with zearalenone. Zearalenone (1 ppb) and alpha-zearalenol (14 ppb) were found in 2 different cow urine samples. The detection limit for both zearalenone and zearalenol is 1 ppb (1 ng/mL) in urine and is linear between 1 and 20 ppb for the former and 1 and 10 ppb for the latter.  相似文献   

6.
The AutoVap 600 system, used in conjunction with an automated gel permeation chromatography (GPC) instrument, automatically collects and evaporates the effluent from the GPC column, dissolves the residue in a fixed volume of desired solvent, and quantitatively transfers it to a sealed vial. This system was evaluated and found to automate efficiently the cleanup of butterfat for pesticide residue analysis. Quantitative recoveries were obtained for each of 4 pesticides fortified in butterfat and cleaned up through the system and for 12 pesticide standards in the absence of sample matrix collected through the system. After loading, the system operates unattended and will automatically prepare up to 23 individual fat samples for determination by gas chromatography without additional cleanup.  相似文献   

7.
Abstract

An automated sulfur analyzer (ASA), which has been developed for sulfur analysis of coal and coke was evaluated for determination of total sulfur in plant materials. Plant materials containing from 0.15% to 0.75% sulfur have been analyzed with precision and accuracy superior to other accepted methods which are more tedious and time‐consuming. The direct reading unit is capable of making approximately one sulfur determination every three minutes.  相似文献   

8.
A liquid chromatographic (LC) method is described for determination of ochratoxin A in animal feeds and cereal grains. Samples are initially extracted with chloroform-ethanol (8 + 2) and 5% acetic acid in water. Extracts are purified using a silica gel cartridge followed by a cyano cartridge. The samples are evaporated, diluted to a known volume, and analyzed using a 10 cm column of 3 micron C18 and a fluorescence detector. The method was applied to a variety of animal feeds and cereal grains at levels of 1.0-0.005 ppm added ochratoxin A. The overall recovery was 90.6% +/- 3.6.  相似文献   

9.
A manual vacuum manifold and an automated solid phase extraction (ASPEC) system were applied for purification of ochratoxin A and zearalenone in wheat, rye, barley, and oat samples with immunoaffinity columns followed by separation with a high-performance liquid chromatograph and fluorescence detection. The immunoaffinity columns for manual sample purification were purchased from a different manufacturer than were those for the automated system. The limit of detection (LOD) for the method for ochratoxin A with a vacuum manifold and ASPEC was 0.1 microg/kg. For the method for zearalenone, the LODs were 1.5 microg/kg with a vacuum manifold and 3 microg/kg with ASPEC. For the methods for ochratoxin A at spiking levels of 0.6 and 2.5 microg/kg, mean recoveries for different cereals varied from 68 to 106%. For the methods for zearalenone, mean recoveries varied from 78 to 117% at spiking levels of 9 and 25 microg/kg. The relative standard deviations of repeatability with various cereals employing both methods were 2-15 and 2-19% for ochratoxin A and zearalenone, respectively.  相似文献   

10.
Zearalenone is an endocrine disruptor with estrogenic activity, produced primarily by Fusarium graminearum, a common cause of corn ear rot and Fusarium head blight or scab in wheat. Zearalenone can be a contaminant of both corn and wheat and may survive thermal food processes. This study was done to determine the heat stability of zearalenone. Reduction of zearalenone was measured during heating at different temperatures (100, 125, 150, 175, 200, and 225 degrees C) in an aqueous buffer solution at different pH values. The rate and extent of zearalenone reduction increased with processing temperature. Less than 23% of zearalenone was lost when heated to /=175 degrees C, and complete reduction of zearalenone was observed in less than 30 min at 225 degrees C, regardless of pH. Overall, zearalenone was most stable at pH 7 followed by that at pH 4 and 10, and the greatest losses occurred above 175 degrees C.  相似文献   

11.
12.
A liquid chromatographic (LC) method was developed for the determination of zearalenone and zearalenol in grains and mixed animal feeds. Samples are extracted with chloroform and purified by a base-acid liquid-liquid partition. Zearalenone and zearalenol are separated by reverse phase LC and determined by fluorescence detection, excitation wavelength 236 nm with a 418 nm cutoff filter. The method was applied to the determination of zearalenone and zearalenol in 395 survey samples of corn, oats, barley, sorghum, silage, and finished feeds. The limit of detection is 10 ng/g for both toxins. The range of naturally occurring toxins found was 10-4,000 ng/g. Average recoveries were 84% for zearlenone and 69% for zearalenol. Coefficients of variation were 24.6% for zearalenone and 30.8% for zearalenol for crop year 1980, and 28.3% for zearalenone and 22.0% for zearalenol for crop year 1981.  相似文献   

13.
The content of zearalenone and its metabolites in urine and tissue samples from pigs fed zearalenone-contaminated oats was established by analytical methods combining solid-phase extraction cleanup of the samples with highly selective liquid chromatography-mass spectrometry (LC-MS)/MS detection. Investigation of the urine samples revealed that approximately 60% of zearalenone was transformed in vivo to alpha-zearalenol and its epimer beta-zearalenol in a mean ratio of 3:1. Zeranol and taleranol as further metabolites could only be detected in trace amounts. Zearalanone was identified at considerable concentrations, though only in a couple of samples. In contrast, liver samples contained predominantly alpha-zearalenol, and to a minor extent beta-zearalenol and zearalenone, with a mean ratio of alpha-/beta-zearalenol of 2.5:1, while zeranol, taleranol, or zearalanone could not be identified in any of the investigated samples. The degree of glucoronidation was established for zearalenone as 27% in urine and 62% in liver; for alpha-zearalenol as 88% in urine and 77% in liver; and for beta-zearalenol as 94% in urine and 29% in liver. Analyses of muscle tissue revealed relatively high amounts of nonglucuronidated zeranol and alpha-zearalenol together with traces of taleranol and zearalenone, indicating that the metabolism of zearalenone and its metabolites is not restricted to hepatic and gastrointestinal metabolic pathways.  相似文献   

14.
15.
The bulk moisture diffusion coefficient (Db) is an important physical parameter of food ingredients and systems. However, the traditional method of measuring Db using saturated salt solutions is very time-consuming and cumbersome. New automated water sorption instruments, which can be used to conveniently and precisely control both relative humidity and temperature, provide a faster, more robust method for collecting the data needed for determining Db. Thus, the objectives of this study were to (1) investigate the use of the DVS instrument for collecting the data needed for determining the adsorption (Dba) and desorption (Dbd) bulk moisture diffusion coefficients for dent corn starch as a function of relative humidity and (2) determine the effect of temperature on Dba for dent corn starch at a constant relative humidity. Kinetic water sorption profiles of dent corn starch were obtained at eight relative humidity values ranging from 10 to 80% at 10% intervals at 25 degrees C and at five temperatures, 15, 20, 25, 30, and 35 degrees C, at 50% relative humidity using a DVS instrument. Db was calculated from the kinetic water sorption profiles using the full solution of Fick's second law for the thin slab model, as well as the slope method, a simplification of the full model. The Dba of dent corn starch at 25 degrees C reached a maximum at intermediate relative humidity values, after which Dba decreased due to a change in the moisture diffusion mechanism from vapor to liquid diffusion. The Dbd of dent corn starch at 25 degrees C remained nearly constant as a function of relative humidity. The Dba for dent corn starch increased as temperature increased from 15 to 35 degrees C, with an activation energy of 38.85 +/- 0.433 kJ/mol.  相似文献   

16.
A sensitive, high performance liquid chromatographic method is described for quantitative determination of zearalenone and alpha-zearalenol in blood plasma. Blood plasma is extracted with 2-propanol in ether, the extract is evaporated to dryness, and the residue is dissolved in 0.18N NaOH. The aqueous phase is washed with chloroform, dichloromethane, and benzene, neutralized with 0.10M H3PO4, and extracted with benzene. The extract is evaporated, dissolved in methanol, and injected onto a reverse phase column containing LiChrosorb RP-8 under the following conditions: methanol-acetonitrile-water mobile phase, fluorescence detector, excitation wavelength 236 nm, and 418 nm cut-off emission filter. The limit of detectability (twice background) is 0.5 ng standard which is equivalent to 0.6 ng standard/mL blood plasma. Linear standard curves are observed over the range of 0-35 ng of injected zearalenone and alpha-zearalenol. The recoveries from blood plasma are 76-101% in the range of 1.5-6.0 ng standard/mL blood.  相似文献   

17.
18.
Near-infrared (NIR) spectroscopy has been used in foods for the rapid assessment of several macronutrients; however, little is known about its potential for the evaluation of the utilizable energy of foods. Using NIR reflectance spectra (1104-2494 nm) of ground cereal products (n = 127) and values for energy measured by bomb calorimetry, chemometric models were developed for the prediction of gross energy and available energy of diverse cereal food products. Standard errors of cross-validation for NIR prediction of gross energy (range = 4.05-5.49 kcal/g), energy of samples after adjustment for unutilized protein (range = 3.99-5.38 kcal/g), and energy of samples after adjustment for unutilized protein and insoluble dietary fiber (range = 2.42-5.35 kcal/g) were 0.053, 0.053, and 0.088 kcal/g, respectively, with multiple coefficients of determination of 0.96. Use of the models on independent validation samples (n = 58) gave energy values within the accuracy required for U.S. nutrition labeling legislation. NIR spectroscopy, thus, provides a rapid and accurate method for predicting the energy of diverse cereal foods.  相似文献   

19.
The liquid chromatographic (LC) method described, suitable for use with both blood plasma and urine, is applicable for determination of zearalenone and alpha-zearalenol at levels as low as 0.5 ng/mL plasma and 5 ng/mL urine. The sample is incubated overnight with beta-glucuronidase to analyze for both conjugated and unconjugated forms of zearalenone. The next day, the sample is acidified with H3PO4, extracted with chloroform, and evaporated to dryness. The residue is dissolved in toluene and loaded onto a silica gel cartridge which is washed with toluene and eluted with toluene-acetone (88 + 12). The eluate is evaporated, and the residue is dissolved in chloroform, extracted with 0.18M NaOH, neutralized with H3PO4, and re-extracted with chloroform. The chloroform extract is evaporated, dissolved in mobile phase for LC, and injected onto a normal phase column under the following chromatographic conditions: mobile phase of water-saturated dichloromethane containing 2% 1-propanol, and fluorescence detector, excitation wave-length 236 nm, and 418 nm cut-off emission filter. Recoveries of zearalenone and its metabolites from blood plasma and urine are 80-89% in the range 2.0-10 ng standard/mL plasma, and 81-90% in the range 10-30 ng standard/mL urine. This method was used to analyze blood and urine samples from a pig fed zearalenone-contaminated feed (5 mg/kg), corresponding to 80 micrograms/kg body weight. Zearalenone was rapidly metabolized to alpha-zearalenol, which appeared in the blood only 30 min after feeding. Almost all zearalenone and alpha-zearalenol was found conjugated with glucuronic acid in both blood plasma and urine.  相似文献   

20.
Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号