首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
旨在克隆测定牛肌原调节蛋白2基因(Myozenin2,MYOZ2)启动子的全长序列,进行活性区域分析,为牛MYOZ2基因功能和表达调控机理研究提供理论依据。通过5′RACE方法确定牛MYOZ2基因转录起始位点;采用PCR技术,以牛基因组为模板克隆MYOZ2基因启动子序列。利用在线软件分析启动子区域中可能包含的转录因子结合位点。依据分析结果重新设计引物,构建7个包含不同缺失片段的双荧光素酶报告基因载体,转染C2C12细胞系,利用双荧光素酶系统检测不同片段的启动子活性。结果表明,克隆得到牛MYOZ2基因启动子序列2 065bp,确定MYOZ2基因的转录起始位点;MYOZ2基因片段-84/+125荧光素酶相对活性极显著高于空载体pGL3-Basic(P0.01),MYOZ2基因片段-683/+125荧光素酶相对活性极显著高于基因片段-263/+125(P0.01)。MYOZ2基因启动子核心区域位于-84/+125bp,而且MEF2,SRF,MyoD,YY1等转录因子可能参与MYOZ2基因的转录调控。  相似文献   

2.
旨在探究山羊DCT基因启动子活性区及相关转录因子对该基因的调控作用,为山羊DCT基因的表达调控提供理论依据。通过对山羊DCT基因5′侧翼区序列及第一外显子区序列进行生物信息学分析,并与人和小鼠DCT基因启动子序列进行比对,同时结合在线启动子预测结果,采用快速克隆的方法构建5个5′系列缺失序列的启动子报告基因载体,以此为基础构建3′缺失序列的6个报告基因载体,并构建SOX10、MITF和OTX2转录因子结合位点点突变的6个报告基因载体,以瞬时转染的方法转染A375细胞,双荧光素酶检测试剂盒检测缺失片段和点突变片段的启动子活性。结果表明,成功构建了山羊DCT基因11个不同长度的启动子报告基因载体,-990~+232bp的P3片段荧光素酶活性极显著高于其他片段(P0.01),基于P3构建的3′系列缺失片段中-881~-154bp的P8片段荧光素酶活性极显著高于其他片段(P0.01)。转录因子SOX10结合位点突变的载体荧光素酶活性极显著降低(P0.01),MITF和OTX2结合位点突变的载体荧光素酶活性极显著增强(P0.01)。山羊DCT基因启动子核心调控区位于-881~-154bp区域,转录因子SOX10对山羊DCT基因发挥正调控作用,而转录因子MITF和OTX2对山羊DCT基因的调控作用尚需深入研究。  相似文献   

3.
旨在初步探索DKK1基因转录调控机制,本研究利用启动子在线预测软件分析了该基因启动子区序列特征,根据Ensembl数据库已公布的猪DKK1基因的5′侧翼区序列,设计特异性PCR引物进行扩增、测序,进而构建启动子区不同缺失片段的pGL3-DKK1双荧光素酶表达载体,分别转染293T细胞和Hela细胞,并进行双荧光素酶报告基因检测。结果显示,DKK1基因启动子中含有1个TATA-box、多种转录因子和1个CpG岛;DKK1基因启动子对239T细胞具有偏好性,其中p-1 679/+292bp启动子片段活性最高,且显著高于其他缺失片段(P0.01)。-953~-1 679bp为核心启动子区域,-586~-953bp区域可能存在负调控元件,在-953~-1 679bp区域可能存在正调控元件。本试验通过对DKK1基因进行生物信息学分析并结合不同长度启动子片段双报告基因活性检测,证实了DKK1基因的5′侧翼区序列具有启动子转录活性,并初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究DKK1基因转录调控机制奠定基础。  相似文献   

4.
山羊脂肪酸合酶基因(FASN)启动子结构与功能的初步分析   总被引:1,自引:0,他引:1  
本研究旨在对山羊脂肪酸合酶基因(Fatty acid synthase,FASN)启动子进行结构与功能的初步分析,进而对其转录调控机制进行探讨。采用PCR技术从西农萨能羊基因组DNA中克隆FASN基因启动子,通过缺失分析,构建7个包含不同缺失片段的荧光素酶报告基因载体,转染山羊乳腺上皮细胞和MCF-7细胞,利用双荧光素酶系统检测不同片段的启动活性。结果表明,克隆得到FASN基因的启动调控序列2 589bp,生物信息学分析发现,该启动子序列含有典型的启动转录元件TATA-box和E-box,分别位于转录起始位点(+1)上游-41和-74bp处。报告基因分析表明,启动子核心区域定位在-293~-79bp,在线软件预测发现,该区域含有Sp1、NF-Y、USF和SREBP等转录因子结合位点。结果显示,FASN基因启动子前端存在负调控元件,Sp1、NF-Y、USF和SREBP等转录因子可能参与FASN基因的转录调控。  相似文献   

5.
为了找到水貂多巴色素异构酶(DCT)基因启动子活性区域及转录因子结合位点,试验采用PCR扩增与克隆,构建双荧光素酶报告基因重组质粒,分别转染到293T细胞和A375细胞,测定其活性,并利用在线软件对序列进行生物信息学分析,预测水貂DCT基因核心启动子区域的转录因子结合位点。结果表明:得到的6个不同长度的启动子片段均具有明显的启动子活性,且-1 292~+113 bp区域活性最高,提示其为水貂DCT基因核心启动子区域;成功筛选出337 bp水貂DCT基因活性较高的启动子片段,发现转录因子特异性蛋白1(Sp1)可能是调控启动子活性的重要转录因子。  相似文献   

6.
旨在通过分析猪StAR基因启动子活性区域,探究猪StAR基因的转录调控机制,从育种学角度为提高猪繁殖力提供新思路。本研究根据Ensembl数据库已公布的猪StAR基因的5′侧翼区序列,利用在线预测软件对该基因启动子区序列信息进行分析,以大白猪基因组DNA为模板,利用特异性引物,进行PCR扩增、测序,进而构建启动子区不同缺失片段的pGL3-StAR双荧光素酶表达载体,转染293T细胞并进行活性检测。结果显示,StAR基因5′侧翼区不含有典型的TATA-box和CpG岛;成功克隆了10个含有不同长度的启动子片段,并构建了各片段与表达载体的重组质粒;转染293T细胞后经双荧光素酶活性检测发现,大白猪StAR基因5′侧翼区存在着核心启动子,其中-196~+127bp这一区域活性值最高,且显著高于其他缺失片段(P0.01),表明在+127~-196bp的区域内存在重要的正调控因素,外显子1对启动子活性起重要的调控作用。-41~-196bp为核心启动子区域,该区域存在着关键的正调控元件,包含GATA2、GATA4、SP1、ZNF263、Hoxa9、KLF16和ZNF740转录因子结合位点。本试验通过对StAR基因进行生物信息学分析,并结合不同长度启动子片段双报告基因活性检测,证实了StAR基因的5′侧翼区序列具有启动子转录活性。初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究StAR基因转录调控机制提供理论依据。  相似文献   

7.
《畜牧与兽医》2015,(6):54-59
利用在线预测软件对牛C4A基因的5'侧翼区序列进行生物信息学分析,成功构建了一系列表达载体,利用双荧光素酶报告基因检测系统分析牛C4A基因的5'侧翼区启动活性。分别通过定点突变技术构建突变质粒,研究调控C4基本表达和诱导表达的转录因子结合位点。利用EMSA技术验证转录因子在研究细胞系中存在与否。结果显示,C4A基因启动子序列转录起始位点上游169 bp为报告基因荧光值最高的片段,即为启动子核心区;其中SP1(-169~-158)、E-box(-122~-117)和AP-1(-80~-71)是调控C4基本表达的主要转录因子结合位点,且3个转录因子在Hep G2细胞系中真实存在。  相似文献   

8.
9.
本研究旨在了解牦牛FKBP6基因5′调控区和启动子区特征,为探讨牦牛和犏牛睾丸组织中FKBP6基因差异表达机制提供依据。利用克隆测序获得牦牛FKBP6基因5′调控区序列,采用生物信息学方法分析其序列特征;采用双荧光素酶报告基因系统鉴定牦牛FKBP6基因核心启动子区,利用生物信息学软件预测与精子发生有关的转录因子结合位点。通过克隆测序和序列拼接获得了1 354bp的牦牛FKBP6基因5′调控区序列,与普通牛的一致性为99.71%;牦牛FKBP6基因5′调控区序列含有潜在的启动子区、典型的CAAT-Box和CpG岛,但未见TATA-Box;荧光素酶活性分析发现,牦牛FKBP6基因的核心启动子区位于5′调控区的-263~-167nt区域,含有CAAT-Box、E-Box、CTCF和CREB等与精子发生相关的转录因子结合位点。牦牛FKBP6基因核心启动子的鉴定和精子发生相关转录因子结合位点的发现为进一步研究牦牛睾丸组织中FKBP6基因的表达调控奠定了基础。  相似文献   

10.
旨在筛选调控山羊毛色基因PMEL的启动子活性区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为彩色山羊的育种和改良提供思路。以山羊基因组DNA为模板,PCR扩增PMEL基因不同长度的启动子缺失片段,定向克隆至pGL3-basic载体,将重组质粒转染到293T和A375细胞,通过双荧光素酶检测系统测定相对荧光素酶活性值;利用生物信息学方法对PMEL基因核心启动子区的转录因子结合位点进行预测,随后利用重叠延伸PCR分别对pGL3-327质粒上预测的转录因子结合位点进行点突变并构建突变载体,利用双荧光素酶检测系统进行活性验证。结果显示,本研究成功构建了7个不同长度的启动子片段,其中6个片段具有明显的启动子活性。经过双荧光素酶活性检测发现山羊PMEL基因-251/+76区域为核心启动子区域。通过不同长度的启动子片段的活性比较发现,-251/-62区域的缺失造成启动子活性从最高到消失,表明该区域对山羊PMEL基因转录调控有重要影响,生物信息学分析发现该区域存在5个转录因子结合位点,利用点突变构建了5个突变载体,经过双荧光素酶检测发现5个突变载体的活性均显著下降。提示这5个转录因子是山羊PMEL基因转录的正调控元件。本研究确定了山羊PMEL基因启动子核心区域为-251/+76,NF-1(-206/-197)、Sp1(-186/-174)、Sp1(-151/-139)、CREB(-91/-82)和Sp1(-82/-71)结合位点为山羊PMEL基因转录的正调控元件。  相似文献   

11.
12.
【目的】 鉴定绵羊趋化因子C-C基序配体19(C-C motif chemokine ligand 19,CCL19)基因启动子的核心启动子区域和关键转录因子,探究该基因在转录调控方面的作用机制。【方法】 选取绵羊CCL19基因5'-侧翼序列1 000 bp,PCR扩增启动子的7个不同长度的截短片段,并连接至pGL3-Basic质粒;将重组质粒与pRL-TK质粒共转染到293T细胞中,结合双荧光素酶报告基因检测系统分析不同截短片段的相对荧光活性。利用在线预测软件分析和筛选CCL19基因核心启动子区域内的转录因子结合位点。采用定点突变技术构建转录因子结合位点缺失的荧光素酶报告载体,与pRL-TK质粒共转染到293T细胞,分析转录因子结合位点缺失质粒的相对荧光活性。【结果】 成功构建了7个不同长度(pGL3-P、pGL3-P1、pGL3-P2、pGL3-P3、pGL3-P4、pGL3-P5及pGL3-P6)的CCL19基因启动子片段的荧光素酶报告载体;采用双荧光素酶报告基因检测系统鉴定出转录起始位点上游-256/-186 bp为CCL19基因启动子核心启动子区域,表明该区域对CCL19基因转录调控有重要作用。生物信息学分析预测到该区域存在POU5F1(-201/-189 bp)、ZBTB26(-228/-217 bp)、FOXI1(-239/-228 bp)、GLI2(-255/-243 bp)和SP2(-219/-211 bp) 5个转录因子的结合位点,并成功构建了转录因子结合位点缺失的荧光素酶报告载体。双荧光素酶报告基因检测系统分析显示,POU5F1转录因子的结合位点缺失后绵羊CCL19基因转录活性极显著降低(P<0.01),FOXI1、ZBTB26、SP2转录因子结合位点缺失后绵羊CCL19基因转录活性均极显著升高(P<0.01)。【结论】 试验成功构建CCL19基因启动子荧光素酶报告载体,确定CCL19基因启动子的核心启动子区域为转录起始位点上游-256/-186 bp,并鉴定出转录因子POU5F1结合位点可能是CCL19基因转录的重要调控位点,为下一步研究绵羊CCL19基因在先天性免疫、适应性免疫和淋巴细胞迁移等方面的功能提供理论基础。  相似文献   

13.
试验旨在筛选水牛HSD17B1基因启动子活性区域及影响因素,并预测其转录结合因子,为探究该基因在水牛繁殖性能中的调控机理提供理论依据。以水牛血液基因组DNA为模板,PCR扩增得到3个HSD17B1基因启动子活性区域序列,并定向克隆至pGL3-promoter载体;将重组质粒转染到水牛卵泡颗粒细胞,通过双荧光素酶检测系统测定相对荧光素酶活性,并探究其与促黄体素(luteinizing hormone,LH)和促卵泡素(follicle stimulating hormone,FSH)的关系;利用生物信息学方法对HSD17B1基因启动子区进行转录结合因子预测。结果显示,本试验成功克隆了3个不同长度的HSD17B1基因启动子片段,并成功构建了双荧光素酶报告载体。经不同长度启动子片段的活性检测发现,pGL-pro-HSD17B1-1500活性最强,证实-866/-1 500 bp为HSD17B1基因核心启动子区域,表明该区域对HSD17B1基因转录调控有重要作用。荧光素酶活性检测结果显示,添加LH可增强HSD17B1基因启动子活性。生物信息学分析发现,HSD17B1基因启动子区存在6个转录因子结合位点:Sp1(-2 327/-2 317 bp)、HOXA4(-2 162/-2 146 bp)、Sp1(-1 409/-1 395 bp)、Sp1(-1 391/-1 380 bp)、Sp1(-1 345/-1 319 bp)和GATA1(-812/-801 bp),但无CpG岛,有1个TATA-box和2个CAAT-box。本研究成功构建了HSD17B1基因启动子荧光素酶报告载体,确定了HSD17B1基因启动子核心区域,并证明LH可增强启动子活性。  相似文献   

14.
旨在分析鹅MyoG基因启动子活性区域和转录因子,探究该基因的转录调控机制。本研究首先通过PCR扩增泰州鹅MyoG基因5'侧翼区序列1 245 bp并对其进行测序和生物信息学分析,其次,构建4个不同缺失片段的双荧光素酶报告载体,转染C2C12细胞系。进一步利用在线软件预测核心启动子区关键转录因子,对转录因子结合位点HNF4(-521~-503 bp)、USF (-379~-370 bp)和E2(-296~-281 bp)进行定点突变并构建突变报告基因载体,在C2C12细胞系内初步鉴定MyoG基因核心转录调控因子。最后,采集70日龄泰州鹅胸肌、腿肌、心、肝、脾、肺、肾和下丘脑组织样,利用荧光定量PCR检测MyoG基因和核心转录调控因子的组织表达谱。结果表明,扩增得到的鹅MyoG基因5'侧翼区序列包含启动子元件;利用双荧光素酶报告载体检测到鹅MyoG基因启动子区-624~-154 bp区域存在关键顺式调控元件;结合定点突变技术初步鉴定USF是鹅MyoG基因核心转录调控元件。组织表达谱研究进一步表明,MyoGUSF基因在鹅8个不同组织中均有表达,且在胸肌、腿肌和心组织中共同高表达(P<0.01)。鹅MyoG基因5'侧翼区具有启动子转录活性,-624~+37 bp是核心启动子区,USF是MyoG核心转录调控因子。试验结果为探究MyoG基因在鹅肌肉发育过程的调控机制提供理论依据。  相似文献   

15.
张冬杰  汪亮  刘洋  刘娣 《中国畜牧兽医》2019,46(9):2535-2542
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P<0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

16.
ZBED6是锌指蛋白家族的一员,在胎盘哺乳动物中极其保守,可通过对IGF2的调控参与骨骼肌生长。为进一步探究ZBED6基因自身的表达调控机制,本研究以民猪基因组DNA为模板,通过常规PCR扩增ZBED6基因启动子区系列截短片段,构建克隆质粒,通过双酶切和连接反应定向连入pGL3-basic载体,利用PK15细胞和双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;利用在线软件预测启动子区的转录因子结合位点,使用重叠PCR定点缺失转录因子结合位点,构建突变载体并在PK15细胞中检测突变载体的相对荧光素酶活性。结果表明:ZBED6基因启动子区-2053^-1777 bp存在多个转录因子结合位点,尤其是-1808^-1777 bp,该片段缺失造成启动子活性下降(P<0.01);利用在线软件在该区间预测到3个转录因子HINFP、Adf-1和CREB3,经实验验证后发现这3个转录因子均可调控ZBED6基因的转录,其中Adf-1效果最为明显。据此推测,民猪ZBED6基因的转录调控机制较为复杂,其启动子区存在HINFP、Adf-1和CREB3等多个调控元件的结合位点。  相似文献   

17.
采用LA—PCR技术扩增牛Nramp1基因2515bp的5′调控区序列,构建了重组克隆载体pEASY—T3-Nramp1,对阳性克隆进行了PCR扩增、限制性酶切鉴定、DNA测序及生物信息学分析。结果表明,试验成功构建了包含Nramp1基因5′调控区的重组质粒。经同源性比对发现,Nramp1基因5′调控区在不同物种中具有一定的保守性,在转录起始位点近端的启动子区域,牛与人、鼠、猪、羊的同源性分别是60.50%,58.52%,72.18%,81.95%。经预测.该调控区富含GR、SP1、c—Ets-1、NF—W2等转录因子结合住点。本研究为进一步确定牛Nramp1基因核心启动子区域及该基因的表达调控奠定了理论基础。  相似文献   

18.
利用PCR方法从猪基因组DNA中扩增了1.2 kb的肌肉生长抑制素(myostatin)基因启动子序列。并进一步以绿色荧光蛋白(GFP)为报告基因,构建了真核表达载体MSTNPro-EGFP;通过转染C2C12小鼠骨骼肌成肌细胞和猪成纤维细胞,对猪myostatin基因启动子的转录调控活性进行鉴定。结果表明:猪myostatin基因启动子可以启动GFP在C2C12细胞中的转录和表达,而将猪MSTNPro-EGFP载体转染猪胎儿成纤维细胞后并未观察到GFP的表达,说明myostatin基因表达的肌肉特异性源于启动子的转录特异性。  相似文献   

19.
本研究旨在初步对小鼠TLE4基因的转录调控机制进行探讨。利用PCR方法扩增TLE4基因5′上游启动区2 849 bp(-2 521 bp~+327 bp)的片段,然后通过步移缺失获得了7段长度不等的启动子片段并分别克隆到荧光素酶(LUC)报告基因表达质粒中。通过双荧光素酶报告活性分析检测TLE4基因启动子区不同长度片段在小鼠畸胎瘤细胞(F9)及小鼠胚胎干细胞(ES)中瞬时转染后的活性。2种细胞的检测结果显示,在TLE4基因启动子区(-2 521 bp~-2 137 bp)存在负性调控元件,而在启动区(-2 137 bp~-1 794 bp)活性最强。对TLE4基因启动区(-2 137 bp~-1 794 bp)进一步缺失分析发现在该基因启动区(-2 027 bp~-1 927 bp)活性较强,分析预测该序列含有一个功能性的(HSF)的结合位点。结果推测HSF对TLE4基因的表达调控及功能行使具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号