首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With an increasing proportion of natural forests being replaced by plantations, there is a need to determine their potential to fulfill ecological purposes other than wood production. This study evaluated the extent to which deciduous and coniferous plantations develop understory attributes comparable to those of naturally regenerated stands. A functional group approach was used to synthesise species responses in terms of their ecological traits. Multivariate analyses of ecological traits revealed 16 emergent groups that shared common traits associated with a similar life history strategy. Responses of these groups, understory structure, and understory environmental conditions to plantation types and stand stages were analyzed and compared to naturally regenerated stands. Clear associations of trait responses to stand developmental stages and plantation types emerged. Light-demanding and wind-dispersed species groups were associated with early-successional stages, while woody groups, ferns and ant-dispersed spring-flowering herbs were associated with late-successional stages. Analyses also revealed an indicator group associated with old naturally regenerated forest. The understory functional groups and environmental conditions of deciduous plantations converged toward those of old naturally regenerated forests. However, understory structure in deciduous plantations remained poorly developed and richness of the indicator group was low compared to unplanted stands. Conifer plantations, currently the most common plantation type in the northern hardwood biome, showed a completely different pathway of understory development. Modifications to current plantation management practices are proposed to help recreate or maintain natural understory biological and physical attributes.  相似文献   

2.
The salamander, Dicamptodon tenebrosus, is threatened by habitat loss and fragmentation associated with forest harvest activities. We used three microsatellite loci and 38 amplified fragment length polymorphisms (AFLPs) to quantify population structure and indirectly evaluate the impacts of forest harvesting on this species. We sampled two old growth sites, three second growth sites and three recently clearcut sites in British Columbia, Canada. Microsatellite allelic richness and the percentage of polymorphic AFLPs were positively correlated with the age of forest stands. Similarly, heterozygosity estimated from both marker types was positively correlated with stand age. Population subdivision (Fst) estimated among forested sites using microsatellite and AFLP markers was 0.033 and 0.095, respectively. Lower genetic variation and heterozygosity in recent clearcuts suggest that clearcut logging may be associated with local population declines. Our genetic findings are consistent with previous studies that report lower salamander densities in recently clearcut sites.  相似文献   

3.
We examined the effect of selective logging on the genetic diversity of Scaphium macropodum using RAPD markers via two approaches: (1) to investigate the immediate effect by studying a same population before and after logging, and (2) to determine the long term effect by comparing two regenerated stands with an adjacent unlogged stand, assuming that they were genetically identical before logging. Results showed no negative immediate impact for the first approach, probably due to the high abundance and heterogeneity of S. macropodum in the compartment investigated. However, for the latter approach, substantial genetic erosion (i.e. 31.5% reduction for Shannon diversity, H) was detected in one of the regenerated stands corresponding to its extremely low tree density for S. macropodum. This implies the possible occurrence of genetic drift and increased inbreeding due to population decline as a result of logging. However, the observed genetic differences among the three sub-populations having prevailed before logging cannot be totally discounted in the second approach. This study also demonstrates the use of tree density as a good surrogate measure of genetic diversity. The present harvesting system in Malaysia based on a general cutting limit need to be refined; the basis for determining cutting limit in a forest management unit should consider abundance of commercial species.  相似文献   

4.
Two-age (deferment or leave tree) harvesting is used increasingly in even-aged forest management, but long-term responses of breeding avifauna to retention of residual canopy trees have not been investigated. Breeding bird surveys completed in 1994-1996 in two-age and clearcut harvests in the central Appalachian Mountains of West Virginia, USA allowed us to document long-term changes in these stands. In 2005 and 2006, we conducted point counts in mature unharvested forest stands and in 19-26 year-old clearcut and two-age harvests from the original study and in younger clearcut and two-age stands (6-10 years old). We found differences in breeding bird metrics among these five treatments and temporal differences in the original stands. Although early-successional species are typically absent from group selection cuts, they were almost as common in young two-age stands as clearcuts, supporting two-age harvests as an alternative to clearcutting. Although older harvests had lower species richness and diversity, they were beginning to provide habitat for some species of late-successional forest songbirds that were absent or uncommon in young harvests. Overall, late-successional forest-interior species were more flexible in their use of different seral stages; several species used both age classes and harvest types in addition to mature forest, which may reflect the lack of edges in our heavily-forested landscape. Consequently, two-age management provides habitat for a diverse group of species as these stands mature and may be an ecologically sustainable alternative to clearcutting in landscapes where brown-headed cowbirds (Molothrus ater) are uncommon.  相似文献   

5.
Lichen and bryophyte communities of spruce and pine plantations in different parts of Britain were surveyed and compared to those of semi-natural pine and oak woodlands. In total, 202 lichen species and 111 bryophytes were recorded. Community composition and species-richness were related to measures of climate, stand structure and deadwood (snags, logs and stumps). Plantations had a less species-rich lichen flora than semi-natural stands related to reduced light availability and lack of old trees. Bryophyte species-richness was similar in plantations and semi-natural stands, and was positively correlated with large diameter (>20 cm), well-decayed logs and stumps. Lichens species-richness was higher on decorticate snags (especially in semi-natural Scots pine stands in the Scottish Highlands). Early successional stands were often the richest for lichens, stumps being important for Calicium and Cladonia species. Three strategies are suggested for enhancing lower plant diversity in planted forests: (1) extending felling rotations; (2) introducing alternative silvicultural systems to clear-felling (e.g. single-tree selection) to foster continuity of woodland conditions and increase deadwood volumes; (3) modifying restocking practices on clear-fells to avoid excessive shading of deadwood.  相似文献   

6.
Levels of genetic variation and intrapopulation genetic structures of Leontice microrhyncha S. Moore (Berberidaceae) were assessed for six populations in South Korea, representing the southern most range of a species found in Northeast China and the Korean peninsula. Detected genetic diversity (Hes) was very low (0.024) and FIS values showed large heterozygote deficiencies. The small percentage of polymorphic loci and numbers of alleles per locus suggest that L. microrhyncha has a history of severe or long-lasting population bottlenecks that have eroded genetic diversity. This study suggests that the Korean population appears to consist of two historically isolated and independently evolving populations. It seems likely that these groups have been isolated and unstable for a significant period of time. However, the effects of recent habitat fragmentation on the historically disjunct and fragmented population system found in L. microrhyncha were not those predicted from the lack of significant relationships between population-level patterns of genetic variation and population sizes. Most non-unique genotypes were shared by most individuals and the lower level of diversity, high levels of inbreeding and population differentiation as well as high rate of seed production indicated that this species is autogamous and self-compatible and probably largely selfing. Therefore, to preserve extant genetic variation, all populations must be protected across the small geographic range of the species to retain both allelic and genotypic diversity.  相似文献   

7.
The level of polymorphism, genetic variability and relatedness of Convallaria majalis-populations (species native in Poland, under partial legal protection) obtained from three Polish regions and from commercial producers (Polish and Dutch) were studied. In addition the differences between the cultivated plants and those occurring in natural stands were analyzed. Each region was represented by at least 20 populations among which half were collected in natural stands and half from cultivation sites (botanical gardens, private gardens and cemeteries), and compared with samples obtained directly from commercial producers. Seven primer pairs used for AFLP profiling amplified 466 scoreable DNA fragments that were used for multidimensional scaling and clustering. The above analyses make it possible to clearly distinguish among individuals and revealed groups of populations according to their geographic origin. Samples from populations collected in natural stands and cultivated in the same region did not differ from each other significantly.These results suggested that cultivated plants were probably obtained directly from the natural stand and the influence of plant cultures on natural populations was rather small.  相似文献   

8.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

9.
The endangered fish species Anaecypris hispanica is restricted to eight disjunct populations in the Portuguese Guadiana drainage. The genetic structure of these populations was studied in order to determine levels of genetic variation within and among populations and suggest implications for conservation of the species. Based on five microsatellite loci, the null hypothesis of population homogeneity was tested. Tests for genetic differentiation revealed highly significant differences for pairwise comparisons between all populations, and substantial overall population subdivision (FST=0.112). All sampled populations contained unique alleles. Our findings indicate marked genetic structuring and emphasise limited dispersal ability. The high levels of genetic diversity detected within and among A. hispanica populations suggest, however, that the observed fragmentation and reduction in population size of some populations during the last two decades, has impacted little on levels of genetic variability. Data imply that most A. hispanica populations should be managed as distinct units and that each has a high conservation value containing unique genetic variation. It is argued that geographic patterns of genetic structuring indicate the existence of eight management units.  相似文献   

10.
We studied the effects of extending the rotation period (long-rotation) and related ecological variables on the biodiversity of six beetle families in larch (Larix kaempferi) plantations. Beetle diversity in the forest understory and the canopy of long-rotation and middle-aged plantations was compared. The relationships between the species richness of each beetle family and 24 ecological variables were identified. We found that beetle diversity tended to increase with long-rotation and responded differently to the ecological variables in two woodland strata (understory and canopy); e.g., an increase in phytophagies occurred in the canopy. Among the 24 measured ecological variables, the species richness of naturally regenerated mature trees, their abundance, and the quality and quantity of coarse woody material (CWM) had the strongest influences on beetle diversity. The former two variables increased with long-rotation; however, most variables related to CWM did not increase because thinned trees were left in middle-aged plantations as fallen logs. Therefore, the occurrence of naturally regenerated native trees that had grown sufficiently tall to reach canopy height in long-rotation plantations underpinned the improved biodiversity in larch plantations, contributing to native beetle species richness in these woodlands. Long-rotation makes plantations more heterogeneous, particularly in the canopy, and promotes greater native beetle diversity.  相似文献   

11.
Both observational and experimental studies have documented drastic reductions in salamanders after forest harvesting. Yet, the amount of time until salamander populations rebound and the factors limiting recovery after harvesting are unknown. We compared the effects of six oak regeneration practices to a control, representing a disturbance gradient from no treatment to silvicultural clearcut, on the relative abundance and reproductive demography of terrestrial salamanders through 13-years post-harvest. Following the experimental disturbance, relative abundance of terrestrial salamanders in treatments that opened the canopy were significantly and persistently lower than in either untreated control stands or midstory herbicide treatments. In general, this trend persisted through 9-13 years after treatment. Changes to demography of commonly captured salamanders varied by species, but Plethodon cinereus had a greater proportion of juveniles in unharvested treatments 7-13-years post-harvest, and Desmognathus ochrophaeus had a greater proportion of juveniles and a greater number of eggs/female in unharvested treatments 1-6-years post-harvest. Population modeling of P. cinereus indicated that adult survival had the greatest elasticity of the vital rates. Further, >60 years may be needed before P. cinereus reduced by the observed decline could reach pre-harvest levels of abundance. Of the treatments with canopy disturbance, the group selection harvest had the greatest abundances of salamanders 7-13-years post-harvest, but when coupled with future stand entries, the volume of wood fiber extracted, costs of harvesting, reduced sprouting of oaks, and soil disturbances, this method may not have the best balance of ecological and economic sustainability in central Appalachian hardwood forest.  相似文献   

12.
The present study investigates the response of the Collembola community to replacement of beech by spruce or by mixed stands of beech and spruce in the Solling mountains (Germany). The study was carried out in three beech (Fagus sylvatica), spruce (Picea abies) and mixed stands of beech and spruce arranged in three blocks. The density, diversity and community structure of Collembola as well as microbial and abiotic parameters in the organic layers and mineral soil of the three spruce, three beech and three mixed stands were investigated. Major results are: (i) Collembola communities did not differ strongly between stand types and were dominated by Folsomia quadrioculata and Mesaphorura species, (ii) neither total abundance of Collembola nor densities of the hemiedaphic species F. quadrioculata, Parisotoma notabilis and Isotomiella minor significantly responded to stand type, (iii) in the mixed stands the fungal biomass was increased leading to high densities of fungal feeding Collembola (e.g. Mesaphorura sp.) and high species numbers of Collembola, (iv) the density of the epedaphic and partly herbivorous group Entomobryidae/Tomoceridae in the spruce stands exceeded that in the mixed and beech stands; presumably this was due to the higher diversity of the ground vegetation in the spruce stands. Canonical correspondence analysis (CCA) of the collembolan communities of L/F and H/Ah horizons also indicated that most of the epedaphic species were associated with the spruce stands. Moreover, results of the CCA indicated that soil pH is an important structuring force for collembolan communities. Overall, results suggest that stand type impact collembolan communities, presumably via changes in the amount and quality of food resources, such as fungal biomass and living plant material. However, differences in collembolan community structure between the investigated stand types were moderate supporting earlier findings that Collembola generally respond little to changes in the vegetation structure.  相似文献   

13.
Nitrogen (N)-fixing species have a function to enrich N in soil. Mixing N-fixing shrub species into poplar stands can be assumed as a measure to increase productivity while improving soil fertility. To verify this assumption and to understand the temporal influences of N-fixing shrub species mixed into poplar plantations on soil fertility, we investigated selected soil chemical and microbial properties in pure poplar (Populus × xiaozhuanica W. Y. Hsu et Liang) and mixed poplar–seabuckthorn (Hippophae rhamnoides L.) stands at ages of five and 15 years in a semi-arid region of Northeast China. Both stands at age of five have similar values of aboveground biomass, total soil organic C concentration, total N concentration, microbial biomass C, and metabolic quotient; however, at age of 15, these values except for soil metabolic quotient are significantly greater in mixed poplar–seabuckthorn stand than in pure poplar stand. The soil metabolic quotient is lower in the former stand than in the latter stand. Our results suggest that, in semi-arid regions, mixing N-fixing shrub species into poplar plantations can improve soil fertility in a long run rather than in a short term; therefore, mixing N-fixing shrub species into poplar stands is an option to improve soil fertility and increase productivity in a long run.  相似文献   

14.
Mika Räty 《Pedobiologia》2004,48(3):283-291
The aim of the study was to compare earthworm communities in anthropogenous birch stands with different origin in Finland. A total of nine forest sites were investigated: three birch stands (Betula pendula) planted ca. 30 years prior to the study after clear-cutting of spruce stands (“Birch after Spruce”, BS), three birch stands planted ca. 30 years earlier on arable soil that had been under normal cultivation until forestation (“Birch after Field”, BF), and three “Natural Deciduous” forests (D). Earthworms were sampled in May and October 1999 using a combination of formaline extraction and modified wet funnels. There were conspicuous differences between replicates of similarly managed forests. Earthworms were totally lacking in one of the D sites, while another had an abundant and diverse community. Only Dendrobaena octaedra was present in one BS site, while the two others harboured also Aporrectodea caliginosa and three Lumbricus species. All these species were also present in the BF sites, where their total biomass (ranging from 70 to 138 g (f.w.)/m2) was 2.6 times the average in BS, and of the same magnitude as the average in natural deciduous stands. A separate experiment revealed that L. terresris and A. caliginosa, which are not found in the surrounding coniferous forest, are able to live and reproduce in the soil of the D site where they were absent. It was concluded that earthworm species survive and reproduce in birch stands established on arable soil, where they have invaded during the long cultivation. On the other hand, their possibilities to disperse from cultural landscapes determine their presence not only in birch stands established in earlier coniferous forests, but also in “natural deciduous” forests where source populations are not present in the surroundings.  相似文献   

15.
对3种密度大叶相思人工林的林下植物和土壤特性进行了研究.结果表明,大叶相思人工林林下植物的总覆盖度为:低密度林分(1 667株/hm2)>中密度林分(4 444株/hm2)>高密度林分(10 000株/hm2).林下植物总生物量呈现:低密度林分>中密度林分>高密度林分,低密度林分的灌木生物量最高,中密度林分的草本生物量最高.低、中、高密度林分的林下灌木层的Simpson多样性指数分别为0.679,0.935和0.708,草本层分别为0.837,0.678和0.789;灌木层的Shannon-Wiener多样性指数分别为1.657,0.535和1.171,草本层分别为0.904,1.228和1.064;灌木层的Pielou均匀度指数分别为0.691,0.333和0.654,草本层的分别为0.504,0.886和0.594.除有效P外,低密度和中密度林分的土壤特性优于高密度林分.  相似文献   

16.
Monoculture pine plantation (PP) was widely established after clear-cutting of natural forests last century in China. However, its effects on soil CO2 efflux (RS) temporally and spatially are still poorly understood. Biotic and abiotic factors that control spatio-temporal variation of RS were assessed in a naturally regenerated oak forest (OF) and a nearby PP in a warm temperate area of China. We hypothesized that spatial variation of RS in PP is lower than that in OF and is less influenced by biotic factors due to its homogeneous stand structure compared to the regenerated OF. RS measurement campaigns were conducted in two 40 m × 60 m plots in OF and PP from Oct. 2008 to Oct. 2009. Soil temperature at 5 cm depth (T5) exerted considerable influence on the temporal variation in RS. However, the spatial variation of RS was not affected by T5 in either PP or OF. The observed spatial pattern of RS remained comparatively consistent throughout the measurement campaigns for both forests. Soil chemical and physical parameters such as soil organic carbon (SOC), light fraction organic carbon (LFOC), total nitrogen (TN), bulk density (BD), total porosity (TP), water-filled pore space (WFPS), and water-holding capacity (WHC) had significant impact on the spatial variation of RS for both OF and PP. We found that biotic factors such as fine root biomass (FR) and stand structure parameters including basal area (BA), maximum diameter at breast height (max. DBH), and mean DBH within 4–5 m of the measurement points had significant influence on the spatial variation of RS in OF, while no similar significant correlation was found in PP. A stepwise multi-linear regression showed that water-holding capacity (WHC), max. DBH within 4 m of the measurement points (max. DBH4), and total porosity (TP) contributed 68.7% to the spatial variation of RS in OF, while light fraction organic carbon (LFOC) and bulk density (BD) accounted for 46.9% of the spatial variation of RS in PP. These differentiated the importance of biotic and abiotic factors in controlling the spatial variation of RS between the naturally regenerated OF and the artificially regenerated monoculture PP. Therefore, compared to OF, relatively lower coefficients of spatial variation for RS were observed in PP across the year, which was partly attributed to its simple stand structure of PP. Our findings are valuable for accurately estimating regional carbon fluxes by considering the spatio-temporal variation of RS in artificially and naturally regenerated forests.  相似文献   

17.
The ability of a taxon to maintain adaptive flexibility in a stochastic environment is a function of the genetic diversity within the population. In small, fragmented populations, genetic variation can become depleted more quickly than in larger, more contiguous populations. Characterizing the patterns of genetic variation and differentiation associated with these processes is an important step in establishing conservation priorities. The Amargosa vole, Microtus californicus scirpensis, is an endangered rodent persisting in the small, fragmented marsh complex surrounding the Amargosa River near Death Valley, California. This naturally patchy system has existed since the end of the Pleistocene (approximately 10,000 y.b.p.), however, fragmentation has been exacerbated by recent anthropogenic changes. For this study, I used five nuclear microsatellite loci and the cytochrome-b region of the mitochondrial genome to quantify levels of genetic variation, population substructure, and patterns of gene flow in M.c. scirpensis. These data were compared to a broadly distributed subspecies, Microtus californicus sanctidiegi. Overall levels of nuclear genetic variation were significantly lower in M.c. scirpensis, whether measured in terms of diversity or heterozygosity, compared to more broadly distributed conspecifics. Moreover, only two haplotypes were recovered from the mitochondrial data with over 90% of the observed haplotypes being identical. Despite low genetic diversity, significant genetic subdivision among M.c. scirpensis populations was detected using both pairwise FST and Bayesian clustering methods. Furthermore, isolation by distance analyses reveal that an important landscape feature, ephemeral tributaries, is critical for dispersal among population clusters. Recommendations for conservation management are presented.  相似文献   

18.
The red kite (Milvus milvus) occurs in a relatively small area in the southwestern Palearctic region, with population strongholds in Central Europe. Following strong human persecutions at the beginning of the 20th century, populations have receded, particularly in peripheral areas and islands. In order to describe and compare levels of genetic diversity and phylogeographic patterns throughout its entire distribution in Europe, sequence variation of a 357 bps part of the mitochondrial DNA control region was assessed in eight populations and 105 individuals. Overall, results indicate that population declines have affected red kite mtDNA variation. We found low levels of genetic diversity (values of nucleotide diversity ranging from 0 in Majorca island to 0.0062 in Central Europe), with only 10 distinct haplotypes, separated by low levels of genetic divergence (mean sequence divergence = 0.75%). Highest haplotype and nucleotide diversities match with demographic expectations, and were found in Central European and Central Spanish samples, where present strongholds occur, and lowest values in the declining southern Spanish and insular samples. Φst estimates indicated moderate gene flow between populations. Phylogeographic patterns and mismatch distributions analyses suggest central European regions may have been colonized from southern glacial refugia (in the Italian or Iberian peninsulas). Interspecific phylogenetic comparisons and divergence date estimates indicated the genetic split between the red kite and its closely related species, the black kite (Milvus migrans), might be relatively recent. The low level of genetic variation found in the red kite mitochondrial control region, compared to the black kite, is likely the result of relatively recent divergence (associated with founder events), successive bottlenecks and small population sizes. As there are several ongoing projects aimed at reinforcing populations in countries such as the United Kingdom, Italy or Spain, our results may prove useful for the genetic management of the species.  相似文献   

19.
Forests naturally maintained by stand-replacing wildfires are often managed with clearcut harvesting, yet we know little about how replacing wildfire with clearcutting affects soil processes and properties. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following disturbance in jack pine (Pinus banksiana) stands in northern Lower Michigan, USA, by sampling soils (Oa+A horizons) from three “treatments”: 3-6-year-old harvest-regenerated stands, 3-6-year-old wildfire-regenerated stands and 40-55-year-old intact, mature stands (n=4 stands per treatment). We measured total C and N; microbial biomass and potentially mineralizable C and N; net nitrification; and gross rates of N mineralization and nitrification. Burned stands exhibited reduced soil N but not C, whereas clearcut and mature stands had similar quantities of soil organic matter. Both disturbance types reduced microbial biomass C compared to mature stands; however, microbial biomass N was reduced in burned stands but not in clearcut stands. The experimental C and N mineralization values were fit to a first-order rate equation to estimate potentially mineralizable pool size (C0 and N0) and rate parameters. Values for C0 in burned and clearcut stands were approximately half that of the mature treatment, with no difference between disturbance types. In contrast, N0 was lowest in the wildfire stands (170.2 μg N g−1), intermediate in the clearcuts (215.4 μg N g−1) and highest in the mature stands (244.6 μg N g−1). The most pronounced difference between disturbance types was for net nitrification. These data were fit to a sigmoidal growth equation to estimate potential NO3 accumulation (Nitmax) and kinetic parameters. Values of Nitmax in clearcut soils exceeded that of wildfire and mature soils (149.2 vs. 83.5 vs. 96.5 μg NO3-N g−1, respectively). Moreover, the clearcut treatment exhibited no lag period for net NO3 production, whereas the burned and mature treatments exhibited an approximate 8-week lag period before producing appreciable quantities of NO3. There were no differences between disturbances in gross rates of mineralization or nitrification; rather, lower NO3 immobilization rates in the clearcut soils, 0.20 μg NO3 g−1 d−1 compared to 0.65 in the burned soils, explained the difference in net nitrification. Because the mobility of NO3 and NH4+ differs markedly in soil, our results suggest that differences in nitrification between wildfire and clearcutting could have important consequences for plant nutrition and leaching losses following disturbance.  相似文献   

20.
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号