首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the loss of 83% of native forests in the Philippines, little is known on the effects of this massive habitat loss and degradation on its forest biotas. This is a cause for concern because of the threat posed to the country’s large number of endemic taxa. To investigate the impacts of anthropogenic disturbance, forest birds and butterflies were surveyed in closed and open canopy forests, as well as suburban, rural and urban areas within the Subic Bay Watershed Reserve and Olongapo City in western Luzon. Measures of forest species richness and population densities for both taxa were similar in the two forest types, but showed different patterns in the other habitats. Indirect gradient analysis showed that forest bird species were positively correlated with vegetation variables (i.e., canopy cover, tree density, height to inversion and ground cover), while forest butterflies were not strongly correlated to any of the measured habitat variables. Community composition of birds in forests was distinct from those in modified habitats, while butterfly communities were more similar. A simulation showed that canopy cover of 60% or higher was required by 24 of the 26 bird species that were sensitive to canopy loss. Endemicity and nesting strata were the significant predictors of vulnerability to habitat disturbance for birds, while endemicity and larval hostplant specificity were significant for butterflies. Both taxa were negatively affected by anthropogenic disturbance but may respond to different components in the habitat (i.e., structure and resources), and thus cannot be used as surrogates of each other. Conservation of forests with contiguous canopy cover should be prioritized, and more ecological research is needed to improve the knowledge on the effects of disturbance on Philippine biodiversity.  相似文献   

2.
Bird species’ community responses to land use in the suburbanizing Twin Cities, Minnesota, USA, were contrasted among reserves, rural lands, and suburbs. For each land use type, bird composition, diversity, and abundance were recorded for 2 years in ≈99 plots in three sampling units (each ≈4500 ha). A habitat gradient defined by canopy structure (grasslands to savannas to forests) was influenced by land use, so ≈300 plots were used to characterize simultaneous variation in bird communities along land use and habitat gradients. At broad scales (aggregate of 33 plots covering ≈4500 ha) suburbs supported the lowest bird richness and diversity and rural landscapes the most, with reserves slightly below rural. Although reserves were like rural lands in diversity of bird communities, they supported more species of conservation concern, particularly of grasslands and savannas. Differences among land use types varied with habitat structure. Suburbs, rural lands, and reserves had similar forest bird communities, but differed in grassland and savanna bird communities. The extensive rural forests are important for the region’s forest birds. Suburban grasslands and savannas had low shrub abundance, low native bird richness and high non-native bird richness and abundance. However, total bird richness and diversity were as high in suburban as in rural and reserve plots because high native richness in suburban forests and high non-native species richness in suburban grasslands and savannas compensated for lower native richness in suburban grasslands and savannas. Bird conservation here and in the Midwest USA should protect rural forests, expand grasslands and savannas in reserves, and improve habitat quality overall.  相似文献   

3.
I examined the lingering effects of past timber management practices on the vegetation structure and bird community of Kibale National Park, Uganda. I compared four forest treatments: unlogged native forest (UL), two that were selectively logged at low (LL) and high (HL) intensities in the 1960s, and a conifer plantation (PL). Forest-dependent birds were best represented at UL. LL was similar to UL in both vegetation structure and bird community composition, although some forest-dependent bird species were missing from the former. HL had significantly less canopy closure and lower tree density than other plots as a result of the combination of extensive secondary damage and natural disturbance patterns that prevented the reclosure of the forest canopy. Thirty-one percent of the forest-dependent bird species observed during the study were not detected at HL. At PL, bird species richness and bird abundance were about a third of those observed in other plots. There were significant correlations between heterogeneity of tree distribution (horizontal heterogeneity) and abundance and species richness of birds across plots. Abundance and species richness of all, forest-dependent, and forest generalist birds were highest in plots with intermediate measures of horizontal heterogeneity, which were mostly unlogged or lightly logged. If reduced-impact logging practices are not implemented during selective logging operations in tropical forests, consequent long-term changes in vegetation structure may result in significant declines in the populations of some forest-dependent species, as was observed in Kibale National Park.  相似文献   

4.
Effects of age and intensity of urbanization on farmland bird communities   总被引:1,自引:0,他引:1  
Urban sprawl is now occurring worldwide and considered as a major large-scale perturbation on ecosystems. Consequently, urban territory is replacing other habitats such as agricultural areas. As farmland biotic communities are already reported to be declining, it seems necessary to assess the urbanization impact on them. We conducted a bird survey on 92 plots of 1 × 1 km chosen after stratification on the proportion of urban area and farmland habitat (either 0%, 25%, 50%, 75%), focusing on farmland habitat. Two aspects of urbanization were studied: its intensity and its age. We found that farmland bird species richness did not vary with increasing proportion of urbanized habitat. Non-farmland bird species richness increased from 0% to 25% classes and was constant for other classes. No effect of the urbanization age on farmland bird species richness was found, whereas a positive one was found on the non-farmland birds’ species richness. Abundance of the most specialized farmland birds decreases with urbanization intensity and age. We also found that, the more urbanized and the more recently urbanized the plots, the more similar bird communities. A strong difference in farmland bird’s communities’ compositions was found between 0% and 25% of urbanization, whereas no distinction was found between 50% and 75%. Altogether, our results suggest that to maintain for farmland birds, it is better to add new urban habitat in place where it already exist, rather than to spread it in small lots throughout the landscape.  相似文献   

5.
We compared the composition and structure of primary forest avifauna among primary forests, selectively logged forests and mixed-rural areas (e.g. villages and agricultural areas) of Peninsular Malaysia. We found that forests that were selectively logged at least 30 years ago contained only 73-75% of the 159 species of extant primary forest birds, with an increased proportion of dominant species. We estimated that only 28-32% of the primary forest species utilized the mixed-rural habitat, and that the number of species that bred in the agricultural landscapes might be even lower. The microhabitat of different species most affected their vulnerability to disturbance. Most small, arboreal frugivores and omnivores, and insectivores that fed from tree trunks, showed greater persistence in the mixed-rural habitat than ground dwelling bird species, which were affected most by disturbance. Resource abundance and variables that were closely related to forest disturbance such as the density of large trees, density of dead trees, canopy cover density and shrub volume influenced the distribution of the primary forest birds. Large primary forest reserves and a revision of short-cycle logging regimes (ca. 30 years) are needed if we are to conserve the lowland rainforest avifauna of Peninsular Malaysia and other parts of Southeast Asia.  相似文献   

6.
Our goal was to evaluate how avian assemblages varied along a gradient of urbanization in the highly fragmented landscape of coastal southern California. We measured species richness and abundance of birds within continuous blocks of habitat, within urban habitat fragments that varied in landscape and local habitat variables, and within the urban matrix at different distances from the wildland interface. These comparisons allowed us to characterize patterns of avifaunal response to a gradient of urban fragmentation. At the fragment scale, we found that fragment area was a strong, positive predictor of the total number of breeding species detected per fragment; total bird abundance per point count also increased with fragment size. Tree cover was higher in small fragments, as was the abundance of birds that typically occupy wooded habitats. Comparisons between core, fragment, and urban transects revealed differing patterns of response of individual bird species to urbanization. In unfragmented habitat, we recorded a relatively high diversity of urbanization-sensitive birds. In urban transects, these species were rare, and a relatively few species of non-native and anthropophilic birds were common. These urbanization-enhanced birds were also recorded in previous urban gradient studies in northern California and Ohio. Bird communities along the urban gradient reached their highest richness and abundance in fragments. The marked difference in vegetation structure between urban and natural landscapes in this arid shrubland system likely contributed to this pattern; the presence of native shrubs and exotic trees in fragments enabled both shrub and arboreal nesters to co-occur. As is characteristic of biotic homogenization, urban fragmentation in coastal southern California may increase local diversity but decrease overall regional avifaunal diversity.  相似文献   

7.
While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1-107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.  相似文献   

8.
Singapore Island suffered one of the highest known deforestation rates in the tropics from the mid-to-late 19th century when over 95% of its native lowland forest was cleared. We compared the current bird community structure and composition among three habitat types, i.e., old (>50 years, 7-935 ha) and young (?50 years, 29-49 ha) naturally regenerating secondary forests and abandoned wooded plantations (27-102 ha) dominated by exotic species. Forest patch area had the strongest influence on the current species richness. The overall bird richness was not greater in most mature forest patches, but 20 species were only found in the old secondary forests and five of these were found in <50% of these patches. The rapid decrease in the number of forest species in plantations was offset by an increase in the number of open habitat species. Comparisons with current bird communities in nearby mainland forest sites (Peninsular Malaysia) suggest that the forest avifauna of Singapore is depauperate. The preservation of larger mature and maturing forests is therefore required for conserving the extant forest avifauna in Singapore. Connecting isolated patches can also be envisioned to facilitate movements of forest birds that have low densities and restricted distribution.  相似文献   

9.
In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed and undisturbed habitats, frugivorous birds facilitate forest regeneration. This study focuses on the tolerance of a frugivorous bird community to anthropogenic habitat disturbance within the broader context of natural forest regeneration with conservation purposes. It was carried out in the tropical cloud forest of Costa Rica’s Talamanca Mountains. Bird community response and tolerance to habitat disturbance was assessed by comparing bird presence and densities along a disturbance gradient, ranging from open pastures to closed mature forests. Birds were censused along nine transects applying the variable width line transect procedure. Forty relevant frugivorous bird species were observed during 102 h of survey time. Densities were calculated for 33 species; nine species responded negatively to increasing level of disturbance and nine others positively. Results indicate that large frugivores are generally moderately tolerant to intermediate, but intolerant to severe habitat disturbance, and that tolerance is often higher for medium and small frugivores. It appears that moderately disturbed habitats in tropical cloud forests are highly suitable for restoration through natural regeneration aided by frugivorous birds. Due to a lack of large forest seed dispersers, severely disturbed habitats appear less suitable.  相似文献   

10.
Forest loss with accompanying urbanization is often permanent as forests are replaced by impervious concrete structures or surfaces. The remaining forest patches are usually isolated and too small to maintain viable populations of forest-dependent wildlife species. Consistent with the species-area function (S = cAz), extirpation of species should follow forest loss. However, this has rarely ever been tested in the urban landscape. We determined whether the observed number of forest-dependent bird extirpations occurring after forest loss matches that predicted by the species-area function in Vancouver (study area ∼126.7 km2), British Columbia, Canada. Prior to European settlement in 1859, Vancouver was covered completely by coastal western hemlock forest. Based on published historical maps of forest cover and present Landsat imagery of Vancouver, we estimated that approximately 87% of the forest area in Vancouver has been converted to urban development. Using the species-area function, we then predicted that approximately 14 bird species closely associated with lowland forest should have been extirpated. This figure is significantly greater than the three bird species known to have been extirpated in Vancouver. When we constrained the comparison to bird species closely associated with lowland forest and restricted in their distribution in British Columbia, we found a close match between the observed and predicted number of extirpations, suggesting that bird species closely associated with lowland forest and restricted in their geographic distribution are most prone to extirpation as a result of forest loss. Given that urban areas are situated in productive habitats with inherently high species richness, it is important that local land-use plans incorporate the conservation of habitat fragments from the onset and place particular emphasis on the regionally restricted forest-dependent species.  相似文献   

11.
Large-scale intensification of smallholder cacao management is currently affecting the agroforestry landscapes of Sulawesi (Indonesia), the world’s third largest cacao producer. Little is known about how this shift from diverse plantations to full-sun cacao will affect functionally important biodiversity within the agroecosystem, and how this is related to landscape-wide patterns in land-use and natural ecosystems. We recorded birds in 43 cacao plots differing in woody and herbaceous vegetation as well as distance to forest in two valleys around the Lore Lindu National Park in Central Sulawesi. Species richness of frugivores and nectarivores decreased with increasing distance to forest, whereas granivorous birds increased in richness. Forest specialists, but not habitat generalists, responded positively to forest edge proximity. Species richness of all functional groups except seed eaters increased at higher density of tall shade trees. Greater species richness of shade trees was associated with higher species richness of frugivores and nectarivores, while herbaceous vegetation did not have a strong impact on the avifauna. The positive effect of shade trees was independent of distance to forest. In conclusion, our study shows the relative importance of local and landscape effects on bird diversity with shade trees being critical for bird conservation in cacao agroforestry landscapes.  相似文献   

12.
We show how Chilean forest bird species richness, abundance and guild structure changes as a function of structural properties of forest stands. We surveyed bird assemblages in two old-growth (>200 years), two mid-successional (30-60 years), and two early-successional forest stands (4-20 years), from November 1999 to September 2000, on Chiloé Island, southern Chile (42°S). Birds were grouped into four habitat-use guilds: large-tree users, vertical-profile generalists, understory species, and shrub-users that occasionally use forests. We recorded a total of 24 bird species: 21 in old-growth, 14 in mid-successional and 16 in early-successional stands. Large-tree users and understory birds were most abundant in old-growth stands, vertical-profile generalists were common in both old-growth and mid-successional stands, and shrub-users were only common in early-successional stands. For nine bird species we found significant relationships between their local abundance and forest structural elements. Higher bird densities in old-growth forests were associated with greater availability of canopy emergent trees, snags, logs and understory bamboo cover in this habitat. Accordingly, bird species diversity in forest stands can be predicted by the presence of these structural elements, and forests should be managed to conserve structural elements that create favorable habitat for bird species in order to prevent future species losses due to logging practices.  相似文献   

13.
Madagascar is a global biodiversity hotspot threatened by forest loss, degradation and fragmentation, all of which are detrimental to the future survival of forest-dwelling organisms. For conservation purposes it is essential to determine how species respond to habitat disturbance, specifically deforestation. In this study we investigated the impacts of deforestation on three vertebrate communities, lizards, small mammals and birds, in an area of spiny forest subjected to anthropogenic forest clearance. Spiny forest has high levels of endemism, but conservation in this unique ecosystem is hindered by the lack of research. We undertook standardised trapping, time-constrained and timed species searches to assess species richness, species abundance and community composition of lizards, small mammals and birds in six areas of ‘forest’ and six ‘cleared’ areas. From surveys and opportunistic sightings we recorded a total of 70 species of birds, 14 species of mammals and 38 species of reptiles and amphibians. We found forest clearing to have a negative effect on species richness and community structure of all groups and identified loss of canopy cover as a driving factor behind this. However, the response and sensitivity to clearing varied between groups and species. Lizards (50%) and small mammals (40%) had the greatest decline in species richness in response to clearing as compared to birds (26%), although birds showed the greatest shift in community structure. The community in cleared areas contained more generalist and introduced species that have wider geographic ranges and habitat preferences, than those unique to the spiny forest. We found the first suite of species to suffer from forest clearance were those of high conservation priority due to their restricted geographic range. Our findings are discussed in relation to future spiny forest conservation and management.  相似文献   

14.
The Puente-Chino Hills, extending west into the highly urbanized Los Angeles Basin, represent one of the largest expanses of lowland habitats in the region. During spring and early summer of 1997 and 1998, birds and vegetation surveys were conducted to clarify the influence of geographical position in the distribution of birds in the hills. Using logistic regression, the inclusion of longitudinal position as a variable is shown to make a statistically significant contribution to bird species presence beyond that of habitat alone for 12 of the 49 most commonly detected species. Species more common than would be expected based on habitat in the east were typical of grassland and open habitats, whereas those more common in the west were characteristic of tall scrub or urban habitats. Thus, species’ distributions in the hills are likely influenced by landscape-scale vegetation patterns and by the aggregate amount of urbanized areas in the west. This emphasizes the importance of using geographical position as a variable when analyzing patterns in bird distribution and siting conservation areas.  相似文献   

15.
Habitat remnants on urban green-space areas (i.e. parks, gardens and golf courses) sometimes provide refuge to urban-avoiding wildlife, leading some to suggest these areas may play a role in wildlife conservation if they are appropriately designed and managed. The high densities observed on some green-space areas may however be attributed to external influences. Localised efforts to enhance the habitat value of urban green-space areas may therefore have little more than a cosmetic effect. This study investigated environmental factors influencing bird, reptile, mammal and amphibian diversity on Australian golf courses to assess the efficacy of small-scale conservation efforts. Abundance and species richness did not simply reflect local habitat qualities but were instead, partly determined by the nature of the surrounding landscape (i.e. the area of adjacent built land, native vegetation and the number of connecting streams). Vertebrate abundance and species richness were however, also associated with on-site habitat characteristics, increasing with the area of native vegetation (all vertebrates), foliage height diversity and native grass cover (birds), tree density, native grass cover and the number of hollows (mammals), woody debris, patch width and canopy cover (reptiles), waterbody heterogeneity and aquatic vegetation complexity (frogs). Localised conservation efforts on small land types can benefit urban-avoiding wildlife. Urban green-space areas can provide refuge to urban-avoiding vertebrates provided combined efforts are made at patch (management), local (design) and landscape (planning) scales.  相似文献   

16.
We examined landscape supplementation (sensu [Oikos 65 (1992) 169]) by forest birds along forest/savanna boundaries in central Brazil to: (1) verify the role of savanna vegetation in providing resources to forest bird communities; (2) suggest minimum amounts of savannas to be conserved within corridors, to provide adequate foraging habitat for forest birds outside reserves. Transect counts parallel (n=64) and perpendicular (n=64) to forests were conducted in eight savannas (cerrado sensu stricto) between February 2000 and January 2001. Patterns of species richness and abundance of birds in relation to distances from forests were examined using Generalised Linear Mixed Models. Omnivores were the most abundant birds foraging in savannas, followed by insectivores and frugivores. Landscape supplementation in savannas was proportional to the density of savanna vegetation. Also, it was higher in the breeding season than in the non-breeding period. These two patterns suggest that surrounding savannas play a major role in providing additional foraging areas for forest bird species. We suggest that the environmental policy currently protecting 20 m of gallery forests along each side of rivers be modified to include at least 60 m of savanna along these forests through central Brazil. The study suggests that appropriate conservation efforts should also encompass the surrounding matrix to which the home ranges of target species are expanded, and not only their major habitat.  相似文献   

17.
Urbanization changes bird community structure during the breeding season but little is known about its effects on migrating birds. We examined patterns of habitat use by birds at the local and landscape level during 2002 spring migration at 71 riparian plots along an urban gradient in Cincinnati, Ohio, USA. Using linear regression, we examined variation in relative density, species richness, and evenness of four migratory guilds associated with natural land covers and building area at four scales (50, 100, 250, 500 m radial buffers). We also examined the influence of local vegetation using multiple regression models. As building area increased, riparian forests tended to be narrower and have fewer native trees and shrubs. In general, native birds were positively associated with tree cover (within 250-500 m of stream) and native vegetation, and negatively with building area (within 250 m); exotic species responded inversely to these measures. Short-distance migrants and permanent residents displayed the weakest responses to landscape and vegetation measures. Neotropical migrants responded strongest to landscape and vegetation measures and were positively correlated with areas of wide riparian forests and less development (>250 m). Resident Neotropical migrants increased with wider riparian forests (>500 m) without buildings, while en-route migrants utilized areas having a wide buffer of tree cover (250-500 m) regardless of buildings; both were positively associated with native vegetation composition and mature trees. Consequently, developed areas incorporating high native tree cover are important for conserving Neotropical migrants during stopover.  相似文献   

18.
The combined effects of rapid habitat loss, fragmentation and disturbance on tropical forest avifaunas have not been examined to date. The southern Amazonian ‘arc of deforestation’ marks the boundary of the most aggressive agricultural frontier in tropical forests worldwide. We sampled 21 disturbed and undisturbed primary forest patches, ranging in size from 1.2 to 14,476 ha, to elucidate the synergistic effects of both forest disturbance and fragmentation on bird community structure, and pinpoint which species were the “winners” and “losers” from this process. A number of forest patch metrics, derived from an independent remote sensing approach, explained much of the resulting presence/absence matrix. The bird community exhibited a highly nested structure, with small patches being most dissimilar from one another. Bird species differed in their response to both forest patch size and forest canopy perforation according to their dependence on closed-canopy primary forest. Forest patch geometry, which clearly modulated the shape of species-area relationships accounted for 83-96% of the variation in species richness, but forest habitat quality resulting from logging and surface-fire disturbance was also a significant predictor of species richness for the most forest-dependent taxa.  相似文献   

19.
Understanding how urban land-use structure contributes to the abundance and diversity of riparian woody species can inform management and conservation efforts. Yet, previous studies have focused on broad-scale (e.g., urban to exurban) land-use types and have not examined more local-scale changes in land use (e.g., the variation within “urban”), which could be important in urban areas. In this paper we examine how local-scale characteristics or fine-scale urban heterogeneity affect(s) the diversity, composition, and structure of temperate woody riparian vegetation communities in the highly urbanized area of Cincinnati, Ohio, USA. We use an information-theoretic approach to compare vegetation models and canonical correspondence analyses to compare species responses to urban variables. We found that urban riparian areas can harbor a high diversity of native canopy and shrub species (38 and 41, respectively); however, native and exotic woody plant species responded differently to urbanization. Exotic canopy species increased with the level of urbanization while native canopy and understory species declined. Understory species diversity displayed a greater response to urbanization than did canopy diversity, suggesting temporal lags in canopy response to disturbances associated with present and recent land-use changes. Certain native and exotic woody species represent ecological indicators of different levels of urbanization. Native species characteristic of pre-European settlement conditions were restricted to the wide riparian forests with little urban encroachment. Several native early-successional species appear tolerant to urbanization. Two exotic species, the tree Ailanthus altissima and the shrub Lonicera maackii, were the most abundant and ubiquitous woody species and appear to exploit urban disturbances. These exotic species invasions have the potential to modify forest composition and ecological function of urban riparian systems. In addition, altered hydrology may be a contributing factor as canopy and understory stem density of high-moisture-requiring species decreased with an increase in impervious surface and grass cover and with proximity to roads and railroads. In the face of urbanization, maintaining wide riparian forests and limiting building, road and railroad development within these areas may help reduce the invasion of exotic species and benefit hydrological function in temperate riparian areas.  相似文献   

20.
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号