首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam Lixisol to evaluate long-term effects of tillage (hand hoeing or oxen ploughing) with or without 10 t ha−1 yr−1 of manure and fallowing on SOM and N concentrations and their distribution in particle size fractions. The field was sown annually to sorghum ( Sorghum bicolor [L.] Moench). Ten years later, total organic C and total N, SOM fractions and their N concentrations, and sorghum yield were determined. Continuous sorghum cultivation without organic inputs caused significant losses of C and N in the hoed and ploughed plots. However, addition of manure to hoed plots was effective in maintaining similar levels of C and N to fallow plots. Without manure, SOM was mainly stored in the size-fraction <0.053 mm (fine organic matter, FOM). SOM was mainly stored in the size-fraction between 0.053 and 2 mm (particulate organic matter, POM). In plots with manure and in fallow plots, the addition of manure more than doubled POM concentrations, with levels in tilled plots exceeding those of the fallow plots, and the highest levels in manually hoed plots. Nitrogen associated with POM (POM-N) followed a similar trend to POM. Hoeing and ploughing led to a decline in sorghum grain yield. Manure application increased yields by 56% in the hoed plots and 70% in the ploughed plots. Grain yield was not correlated with total SOM but was positively correlated with total POM. This study indicated that POM was greatly affected by long-term soil management options.  相似文献   

2.
Human-induced degradation of natural resources in general and of soil in particular, is a major problem in many regions, including the Sudano-Sahelian zone. The combined effects of tillage and manure application on Lixisol properties and on crop performance were investigated at Saria, Burkina Faso, to find efficient soil management practices to improve soil fertility. A randomized block design with four treatments (hand hoeing only, hand hoeing+manure, ploughing only, oxen ploughing+manure) in three replications was started in 1990. Ten years later, total soil organic (SOC), particulate organic matter and C mineralization were measured. Initial SOC concentration was 4 mg/g and dropped to 2.1 mg/g soil in ploughed plots without manure and to 2.5 mg/g soil in hoed plots without manure. Manure addition mitigated the decrease of SOC in ploughed plots and even built up SOC in hoed plots, where it increased to 5.8 mg/g soil. Manure had a large effect on the fractions in which SOC was stored. In ploughed plots, a large amount of SOC was stored in physical particles >0.25 mm, while in hand hoed plots the maximum SOC was stored in finer fractions. In the topsoil, hoeing and manure resulted in a higher SOC than ploughing with no manure. However, in the 15–25 cm layer, particularly in September, particulate organic matter was greater in ploughed plots with manure than in hoed plots with manure. Crop yields were highest on ploughed+manure plots and lowest on ploughed plots with no manure. We conclude that applying manure annually mitigates the negative effect of ploughing and hand hoeing on SOC and related properties and therefore can contribute to the sustainability of the agricultural system in the Sudano-Sahelian zone.  相似文献   

3.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

4.
Abstract

NPK was applied to a Haynie, very fine, sandy loam as 89.6 MT/ha (40 T/ac) of OF (organic fertilizer as feedlot manure at 45% water content) and as MF (mineral fertilizer) with nutrients equivalent to the manure during 18 months.

Organic fertilizer increased soil organic matter content 0.25% more than the MF and 0.2% more than the control. Organic fertilizer increased the CEC 0.3 m.e./100 g more than the MF and 0.4 m.e./100 g more than the control. Organic fertilizer increased exch. Mg by 32 kg/ha while MF decreased exch. Mg slightly.  相似文献   

5.
The effects of continuous application of cattle manure on the quantity and quality of soil organic matter (OM) were investigated in an Ando soil (Melanudand). Surface soil samples were periodically taken from NPK and NPK+ manure (80, 160, and 320 Mg ha-1 y-1) plots over a period of 20 y. Particulate (>53 µm) and mineral-associated <53 µm) OM fractions were separated from the soil samples by sieving after:mechanical dispersion. For the NPK treatment, both the organic C and total N concentrations of the whole soil continued to decrease, the reduction reaching about 10% after 20 y. Manure application at the rate of 80 Mg ha-1 y-1 did not lead to an increase in the amounts of organic C and total N in the whole soil. In contrast, both the organic C and total N concentrations increased by the application of 160 and 320 Mg ha-1 y-1 manure. Manure application at the rate of 320 Mg ha-1 y-1 increased the organic C concentration by 30% and total N concentration by 48% after 20 y. The decrease in the organic C and total N concentrations in soil with NPK fertilization was attributed to a decrease in the amount of mineralassociated OM. Manure application increased significantly the amount of particulate OM, while it did not affect the amount of mineral-associated OM. It also resulted in a decrease in the C/N ratio of soil OM, especially of the particulate OM. The analysis of humic acids showed that manure application induced a decrease in the degree of humification and an accumulation of high molecular weight components. The quantitative'and qualitative changes of OM in the Ando soil upon manure application were mainly due to the accumulation of manure-derived particulate OM.  相似文献   

6.
本文以中国农业科学院山东禹城长期定位施肥试验为平台,研究了长期施用有机肥和化肥26年后对土壤活性氮库不同组分[颗粒有机氮(POM-N)、 可溶性有机氮(DON)、 微生物量氮(SMBN)及轻组有机氮(LFOM-N)]及土壤酶活性的影响。结果表明,与不施肥相比,长期施肥显著提高了土壤全氮、 颗粒有机氮、 可溶性有机氮、 微生物量氮以及轻组有机氮的含量,长期施有机肥效果好于化肥,施用高量有机肥效果好于施用常量有机肥。常量施用量下,50%有机肥和50%化肥配施处理其土壤全氮和活性有机氮库各组分含量与高量化肥处理的相当。长期施化肥处理土壤全氮及活性有机氮库各组分含量随施肥量的增加而显著增高。POM-N对土壤全氮的贡献率最高,且明显受施肥方式的影响,LFOM-N对土壤全氮的贡献率不随施肥方式的改变而变化。长期施肥处理土壤脲酶、 碱性磷酸酶和蔗糖酶活性显著增加,它们之间及与土壤全氮、 速效磷及有机碳含量间呈现显著或极显著相关性,脲酶活性与土壤各活性氮组分间也存在显著或极显著相关性; 但长期施肥后土壤过氧化氢酶的活性低于不施肥  相似文献   

7.
为了探讨长期不同施肥潮土有机碳矿化对添加牛粪的响应特征及添加牛粪对长期不同施肥潮土有机碳矿化的激发效应,以始建于1986年的长期定位试验为平台,通过室内恒温培养的方法研究添加等氮量牛粪后长期不同施肥(不施肥,CK;常量有机肥,SMA;常量化肥,SMF;常量有机无机配施,1/2(SMA+SMF))潮土有机碳矿化、土壤有机碳及活性碳库组分(微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳)含量的变化特征。结果表明:无论添加牛粪与否,长期不同施肥潮土有机碳矿化过程均符合一级动力学方程,而牛粪的添加显著增加了长期不施肥、长期单施化肥和长期有机无机配施土壤的有机碳矿化速率常数,增长幅度分别为21.74%、35.00%和45.00%;添加牛粪提高了长期不同施肥潮土有机碳、微生物量碳、颗粒有机碳和易氧化有机碳含量,却显著降低了可溶性有机碳含量;牛粪对长期不施肥、长期施用常量有机肥、常量化肥和常量有机无机配施潮土有机碳矿化的正激发效应分别达到了48.56%、3.60%、48.43%和3.92%,且对长期不施肥及长期施用常量化肥潮土的激发效应显著高于对长期施用常量有机肥及长期有机无机配施土壤;冗余分析显示添加牛粪对长期不同施肥土壤有机碳矿化的激发效应与土壤活性组分碳氮比呈正相关,与土壤养分含量呈负相关。该研究不仅为合理施用有机肥和实现农田生态系统的可持续发展提供理论依据,还有利于实现农业资源再利用及其效益最大化。  相似文献   

8.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

9.
长期施肥对土壤有机碳和无机碳的影响   总被引:14,自引:2,他引:14  
利用18年长期定位试验,研究了在不同施肥条件下,土壤有机碳和无机碳在0~50 cm土层分布特征。结果表明,施肥对土壤有机碳的影响随着土层深度的增加而下降,0~7.5 cm土层的土壤有机碳比7.5~15 cm、15~30 cm、30~50 cm分别增加了4.6%、22.0%、63.1%,而无机碳含量随着土层深度的增加而增加,与有机碳的变化规律正好相反。不同种类的肥料对土壤有机碳的影响也不相同,化肥、有机肥长期配合施用和长期施用有机肥可以在0~30 cm土层增加土壤有机碳含量,降低土壤中的无机碳含量,而长期单施化肥对土壤的有机碳和无机碳含量无明显差异。  相似文献   

10.
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon (C), nitrogen (N), and phosphorus (P) metabolisms in response to agricultural nutrient management. To determine the roles of fertilization and residue return with respect to ecological stoichiometry, we collected soil samples from a 30-year field experiment on residue return (maize straw) at rates of 0, 2.5, and 5.0 Mg ha-1 in combination with 8 fertilization treatments:no fertilizer (F0), N fertilizer, P fertilizer, potassium (K) fertilizer, N and P (NP) fertilizers, N and K (NK) fertilizers, P and K (PK) fertilizers, and N, P, and K (NPK) fertilizers. We measured soil organic C (SOC), total N and P, microbial biomass C, N, and P, water-soluble organic C and N, KMnO4-oxidizable C (KMnO4-C), and carbon management index (CMI). Compared with the control (F0 treatment without residue return), fertilization and residue return significantly increased the KMnO4-C content and CMI. Furthermore, compared with the control, residue return significantly increased the SOC content. Moreover, the NPK treatment with residue return at 5.0 Mg ha-1 significantly enhanced the C:N, C:P, and N:P ratios in the soil, whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass. Therefore, NPK fertilizer application combined with residue return at 5.0 Mg ha-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms. Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.  相似文献   

11.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

12.
长期不同施肥条件下黑土的有机质含量变化特征   总被引:8,自引:1,他引:8  
以吉林公主岭黑土有机肥化肥配施30年长期定位试验结果为材料,分析了长期不同施肥下黑土有机质的变化特征。结果表明,长期不施肥或单施化肥(M0区)土壤有机质含量呈下降趋势,30年下降幅度为2.1%~7.9%;施用常量有机肥(M2区)和高量有机肥(M4区)的土壤有机质含量呈增加趋势,30年M2区和M4区有机质累积增加幅度分别为42.2%~50.0%和81.5%~94.7%。M2区和M4区有机质增加幅度因施用有机肥中有机质含量的变化可分为两个阶段,1980~1992年增加幅度分别平均为2.4%和9.3%,12年后随着有机肥中有机质含量增加,后18年M2区和M4区有机质累积增加幅度分别平均为41.4%和71.5%。施用相同化肥条件下配施不同水平有机肥,各处理间土壤有机质含量差异达到显著水平;而在施用相同有机肥条件下配施不同化肥时,各处理间有机质含量差异不显著。由此可以得出,有机肥的数量和有机质含量是影响土壤有机质含量变化的主要因素,因此,选择合适的有机肥数量和有机质含量是提升土壤有机质的主要措施,在东北黑土上施用优质高量有机肥可迅速提高土壤有机质含量。  相似文献   

13.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

14.
Carbon fractions in soils apparently vary not only in space, but also over time. A lack of knowledge on the seasonal variability of labile carbon fractions under arable land hampers the reliability and comparability of soil organic carbon(SOC) surveys from different studies. Therefore, we studied the seasonal variability of two SOC fractions, particulate organic matter(POM) and dissolved organic carbon(DOC), under maize cropping: POM was determined as the SOC content in particle-size fractions, and DOC was measured as the water-extractable SOC(WESOC) of air-dried soil. Ammonium, nitrate, and water-extractable nitrogen were measured as potential regulating factors of WESOC formation because carbon and nitrogen cycles in soils are strongly connected. There was a significant annual variation of WESOC(coefficient of variation(CV) = 30%). Temporal variations of SOC in particle-size fractions were smaller than those of WESOC. The stocks of SOC in particle-size fractions decreased with decreasing particle sizes, exhibiting a CV of 20%for the coarse sand-size fraction(250–2 000 μm), of 9% for the fine sand-size fraction(50–250 μm), and of 5% for the silt-size fraction(20–50 μm). The WESOC and SOC in particle-size fractions both peaked in March and reached the minimum in May/June and August, respectively. These results indicate the importance of the time of soil sampling during the course of a year, especially when investigating WESOC.  相似文献   

15.
 The effects of a composted organic amendment and solarization on the organic matter (OM) of a sandy soil were determined by means of particle-size fractionation and analysis of carbon and nitrogen contents. After 2 years, total soil carbon increased under organic fertilization but did not significantly change with solarization. As a consequence of the climatic conditions in the greenhouse, the carbon concentrations (g kg–1 fraction) of the particle-size fractions were lower than those found for temperate soils and closer to those for tropical soils. The carbon amounts (g kg–1 soil) and carbon:nitrogen ratios, which were highest in fractions >200 μm, reflected the short-term influence of the industrially processed organic amendment, rich in composted coarse plant debris. In contrast, the characteristics of the OM associated with each fraction were not significantly affected by solarization. In comparison with other coarse-textured temperate or tropical soils, carbon concentrations in fine silt (2–20 μm) and clay (0–2 μm) fractions were very low. This suggests a "greenhouse effect", together with a high rate of carbon mineralization affecting fine silt and clay fractions. Received: 19 November 1999  相似文献   

16.
Abstract. A no-tillage (NT) system was developed in semiarid Morocco to improve the soil fertility and stabilize yield through conservation of water. Results in two long-term trials (4 and 11 years) were able to show the effects of a no-tillage system in increasing total soil organic matter and total nitrogen. Over time, the quality of the NT soil surface was improved compared with that under conventional tillage (CT) with disc harrows. This effect was the result of an increase in soil organic carbon (SOC) and a slight decline in pH. However, over time, nitrogen decreased in both tillage practices, especially in the 0–25 mm layer (from 0.59 to 0.57 t ha−1 and from 0.44 to 0.42 t ha−1 under NT and CT, respectively). After 4 years of NT an extra 5.62 t ha−1 of SOC was sequestered in the 0–25 mm layer, and after 11 years the SOC increased further to 7.21 t ha−1.  相似文献   

17.
The effect of long-term (45 years) mineral and organic fertilization on soil organic matter (SOM) quantity (organic C and N content) and quality (hot-water-soluble C content, microbial biomass C content, hydrophobic organic components of SOM, soil enzyme activities) was determined in a field experiment established in Trutnov (North Bohemia, sandy loam, Eutric Cambisol). Six treatments were chosen for investigation: unfertilized control, mineral fertilization (NPK), straw N, farmyard manure (FYM) and straw and FYM completed with mineral NPK. Soil samples were taken from the arable layer (0–20 cm) in spring over the period of 2004–2010. The positive effect of FYM on the total organic C and N content, hot-water-soluble C content and hydrophobic organic components of SOM was more than 50% higher than that of straw and mineral N fertilization. Application of straw N increased microbial biomass C content in soil and generated invertase activity above the level of FYM. Hot-water-soluble C content, hydrophobic organic components of SOM and urease activity were positively correlated with total organic C and N content (R = 0.58–0.98; p < 0.05). Addition of mineral NPK to both the straw and FYM emphasized the effect of organic fertilization in most of monitored characteristics.  相似文献   

18.
To evaluate the use of organic amendments as an alternative to conventional fertilization,a 10-year experiment on a loam soil was conducted under a crop rotation system in both greenhouse and outdoor plots applied with chemical fertilizers (NPK) and vegetal compost (organic fertilizer) in the Guadalquivir River Valley,Spain.The effect of these two different fertilization regimes on the soil physical properties was evaluated.Soil organic carbon (OC),soil bulk density (BD),soil water retention (WR),available water content (AWC),aggregate stability (AS),and soil physical quality (Dexter’s index,S) were determined.The use of organic fertilizer increased OC and resulted in a significant increase in AS and a decrease in BD compared to the mineral fertilizer application in both greenhouse and outdoor plots.The outdoor plots showed the lowest BD values whereas the greenhouse plots showed the highest AS values.In the last years of the 10-year experiment the S parameter was significantly higher in organic fertilizer plots,especially for greenhouse plots.At the end of the study period,there were no significant differences in WR at field capacity (FC) between treatments in both systems;the AWC was also similar in the greenhouse plots but higher in the mineral outdoor plots.In mineral fertilizer treatments,a small improvement in the physical properties was also observed due to the utilization of less aggressive tillage compared with the previous intensive cropping system.Physical soil properties were correlated with soil OC.The sustainable management techniques such as the use of organic amendments and low or no tillage improved soil physical properties,despite the differences in management that logically significantly affected the results.  相似文献   

19.
采用盆栽试验,研究了连续3年施用生物有机肥对3种土壤有机质组分、 棉花养分吸收量及产量的影响。结果表明,连续施肥3年后,不同有机质含量土壤的有机质组分含量、 棉花养分吸收量及产量均较不施肥有不同程度的提高。3种土壤随着施肥量的增加,土壤有机质总量和活性有机质组分(活性有机质、 中活性有机质、 高活性有机质)增加,活性有机质在3年后的增加幅度高于有机质总量,说明连续施用生物有机肥可以改善土壤有机质质量。高等、 中等有机质含量的土壤施用生物有机肥2030 g/kg时养分吸收量最大; 低等有机质含量的土壤在施用生物有机肥40 g/kg时养分吸收量最高。高、 中、 低等有机质含量的土壤棉花产量分别在施用生物有机肥20、 20、 40 g/kg时最大,较不施肥增加了54.05%、 37.15%、 104.08%。通过相关分析表明,随着土壤的本底有机质含量由高到低,有机质组分、 棉花养分吸收量及产量之间的相关性则越好,养分吸收量和产量存在极显著相关。  相似文献   

20.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号