首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The influence of the soil mineral phase on organic matter storage was studied in loess derived surface soils of Central Germany. The seven soils were developed to different genetic stages. The carbon content of the bulk soils ranged from 8.7 to 19.7 g kg—1. Clay mineralogy was confirmed to be constant, with illite contents > 80 %. Both, specific surface area (SSA, BET‐N2‐method) and cation exchange capacity (CEC) of bulk soils after carbon removal were better predictors of carbon content than clay content or dithionite‐extractable iron. SSA explained 55 % and CEC 54 % of the variation in carbon content. The carbon loadings of the soils were between 0.57 and 1.06 mg C m—2, and therefore in the ”︁monolayer equivalent” (ME) level. The increase in SSA after carbon removal (ΔSSA) was significantly and positively related to carbon content (r2 = 0.77). Together with CEC of carbon‐free samples, ΔSSA explained 90 % of the variation in carbon content. Clay (< 2 μm) and fine silt fractions (2—6.3 μm) contained 68—82 % of the bulk soil organic carbon. A significantly positive relationship between carbon content in the clay fraction and in the bulk soil was observed (r2 = 0.95). The carbon pools of the clay and fine silt fractions were characterized by differences in C/N ratio, δ13C ratio, and enrichment factors for carbon and nitrogen. Organic matter in clay fractions seems to be more altered by microbes than organic matter in fine silt fractions. The results imply that organic matter accumulates in the fractions of smallest size and highest surface area, apparently intimately associated with the mineral phase. The amount of cations adhering to the mineral surface and the size of a certain and specific part of the surface area (ΔSSA) are the mineral phase properties which affect the content of the organic carbon in loess derived arable surface soils in Central Germany most. There is no monolayer of organic matter on the soil surfaces even if carbon loadings are in the ME level.  相似文献   

2.
The dependency of the retention of dissolved organic carbon (DOC) on mineral phase properties in soils remains uncertain especially at neutral pH. To specifically elucidate the role of mineral surfaces and pedogenic oxides for DOC retention at pH 7, we sorbed DOC to bulk soil (illitic surface soils of a toposequence) and corresponding clay fraction (< 2 μm) samples after the removal of organic matter and after removal of organic matter and pedogenic oxides. The DOC retention was related to the content of dithionite‐extractable iron, specific surface area (SSA, BET‐N2 method) and cation exchange capacity (pH 7). The reversibility of DOC sorption was determined by a desorption experiment. All samples sorbed 20–40 % of the DOC added. The DOC sorption of the clay fractions explained the total sorption of the bulk soils. None of the mineral phase properties investigated was able to solely explain the DOC retention. A sorption of 9 to 24 μg DOC m–2 indicated that DOC interacted only with a fraction of the mineral surface, since loadings above 500 μg m–2 would be expected for a carbon monolayer. Under the experimental conditions used, the surface of the silicate clay minerals seemed to be more important for the DOC sorption than the surface of the iron oxides. The desorption experiment removed 11 to 31 % of the DOC sorbed. Most of the DOC was strongly sorbed.  相似文献   

3.
Abstract

The content of various forms of iron (Fe) (free, reducible, and organic) were determined by selective extraction methods in three wetland profiles between 1993 and 1995 seasons. The result showed that Fe distribution was in the order: dithionite (Fed) > hydroxylamine (FeH) > pyrophosphate (Fep) iron in the three pedons. The hydroxylamine‐Fe constituted between 10–42% (1993), 20–47% (1994), and 10–12% (1995) of the total free Fe oxides. The pyrophosphate‐Fe, on the other hand, constituted between 0.2–1.0% (1993), 19–52% (1994), and 3–9% (1995) of the total free Fe oxides. Dithionite‐Fe (total free iron oxides) content increases with the increasing depth, while hydroxylamine‐Fe decreases, suggesting that larger proportions of Fe oxides are present as crystalline forms in the lower horizons. The active Fe ratios were generally high in the top soils and low in the subsoil. It ranged between 0.03 and 0.69 (1993), 0.05 and 68 (1994), 0.05 and 0.53 (1995) in all pedons. This suggests that poor drainage slowed down soil development. Highly significant correlations (0.1%) were evident between phosphorus (P) and organic carbon; ECEC and base saturation; FeH and active Fe ratio. Significant correlations (1%) were also evident between Fe2+ and organic carbon; P and FeH; ECEC and clay. Furthermore, significant correlations (5%) were also obtained between clay and Fed; pH and Fed; active Fe ratio and P; FeH and clay; active Fe ratio and Fed.  相似文献   

4.
The decrease of NMR visibility of the C signal in soil samples due to the association between organic carbon (OC) and the topsoil mineral surface was investigated. CPMAS 13C‐NMR spectra were obtained for soil particle‐size fractions (< 2 μm, 2–20 μm, > 20 μm) and bulk soils from an agricultural topsoil (Chernozem) that had received three different amendments (no fertilization, mineral fertilization (NPK), mineral (NPK) and organic (cattle manure) fertilizations) at Bad Lauchstädt, Germany. The soil organic carbon content of the three soils depended on the degree of soil fertilization. There was no constant relationship between the total NMR signal intensity and the total amount of organic carbon (TOC) for all size fractions. Indeed, a key role played in the C signal intensity by the paramagnetic ferric ion from the clay content in soil fractions and bulk soils was confirmed. Thus, we describe the variations of C signal intensity by taking into account the distribution of clay‐associated OC and non‐associated OC pools. Depending on the amendment, the C signal visibility was weakened by a factor of 2–4 for the clay‐associated OC. This estimation was rendered possible by combining mineral specific surface area (SSA) measurements with the N2 gas adsorption method (BET method) and determination of TOC and iron concentrations. This approach contributes to the quantitative evaluation of the CPMAS 13C‐NMR detection.  相似文献   

5.
The iron oxides fractions of four major physiographic units obtained from a transect of calcareous materials were studied to assess the effects of key pedogenic processes and local hydrology conditions as well as physiographic units in controlling iron oxides forms in the north-west of Iran. Samples from different horizons belonging to six pedons were selected and analyzed for soil physicochemical properties, clay minerals, and Fe oxides forms (Fed, Feo, Fep). In general, the soils indicated some variation in the concentration of iron oxides that could be related to rate of weathering, pedogenic accumulations, geomorphologic conditions (as results of different in physiographic units), wet and dry cycle, and organic matter. A wide relative variation in mean values of Fed (6.4–9.9 g kg?1), Feo (2.9–4 g kg?1), and Fep (0.68–1.3 g kg?1) was observed among physiographic units. On the plateau unit, the presence of the most stable geomorphologic conditions and high rate in situ weathering (reflected in clay content), coupled with minor deposition of sediment suggest that the soils have more dynamic conditions than other units, reflecting in the greatest amount Fed and the lowest Feo/Fed ratio. Fed content of the soils containing less clay content (15–25%) was significantly different from those with greater clay content (25–35%).  相似文献   

6.
Abstract

Many of the cultivated soils of sub‐Saharan Africa typically have a surface horizon low in clay and with a low cation exchange capacity (CEC). In these soils, CEC is largely due to the soil organic matter (SOM). Measurements made on long‐term trials show that changes in CEC and SOM are positively correlated to one another, but not of same magnitude, suggesting that not all of the SOM plays an equal role as regards the soil CEC. To study the influence of the different SOM size fractions on the CEC, soils with or without application of manure or compost coming from trials in Chad and Côte d'Ivoire were separated without destruction of the SOM into five organo‐mineral fractions: “coarse sand”;, “fine sand”;, “coarse silt”;, “fine silt”;, and “clay”; made up of particles of sizes between 2,000 and 200, 200 and 50, 50 and 20, 20 and 2, and 2 and 0 μm, respectively. Fractionation was carried out by mechanical dispersion of the soil, wet sieving of the fractions larger than 20 μm, and decanting of the “clay”; and “fine silt”; fractions. The CEC of these fractions increases inversely with their size. The “clay”; fraction which contains half of the SOM contributes about 80% of the CEC of the soils. The CEC of the fractions is largely a function of their carbon (C) content, but the organic CEC per unit C of the “clay”; fraction appears to be four times greater than that of the other fractions (1,000 as against 270 cmolc kg‐1). Applications of manure or compost increase the CEC of the soils by increasing the soil C only when this C increase concerns the fine fractions of the SOM.  相似文献   

7.
According to recent conceptual models, the organic carbon (OC) of soils can be divided into OC fractions of increasing stability from labile free OC to resistant OC associated with the soil mineral phase. In this study, we present a method for quantifying two OC fractions based on soil aggregate–size fractionation and the N2 gas–adsorption method. For this purpose, we analyzed soil material of the plow layer of a Haplic Chernozem subjected to different fertilizer treatments (no fertilizer, mineral fertilizer, mineral and organic fertilizer). The total organic‐C concentration (TOC) and the clay content of the different size fractions were determined as well as the specific surface area (SSAmineral) and the sample pore volume after thermal oxidation (OC‐free). The TOC of the different soil‐aggregate fractions was linearly related to SSAmineral. Clay‐associated OC and nonassociated OC fractions of the different soil samples were quantified using two methods based on the OC surface loading at the clay fraction. The application of organic fertilizer increased the amount of nonassociated OC but hardly affected the concentration of clay‐associated OC. This finding agrees with previous studies on C dynamics in soils and indicates a finite capacity of soil materials to sequester OC. Even without any addition of organic fertilizer, the mineral phase of the analyzed soil material appears to be C‐saturated.  相似文献   

8.
Abstract

Changes in chemical and mineralogical characteristics associated with different particle size fractions in soil after 40 years of continuous production of corn by the conventional tillage method (CC) as compared with those of an adjacent native grassland site (NG) are investigated. Results indicate that corn cropping in a soil previously supporting native vegetation produces a decline in total and humified organic matter, phenolic compounds, enzymatic activities, cation exchange capacity (CEC), and hydrosoluble ions, both in the whole soil and in its particle‐size separates. The’ largest losses in organic carbon (C) and nitrogen (N) contents of the cultivated soil were observed in the sandy fractions, the lowest in the silt+clay separates. The humification index (HI) indicates a higher degree of humification of the organic matter in NG than in CC samples. For both NG and CC sites the finest fraction (silt+clay) resulted to be enriched in organic C, total N, humus, phenolic compounds, enzyme activity, CEC, and hydrosoluble ions with the only exception of mineral N forms and sulphates (SO4). Slight differences were observed in the mineralogical composition of NG and CC soils. The sandy fractions of NG showed greater amounts of phyllosilicates while a lower content was found in the silt+clay fraction of CC as a consequence of a crumbling of parent rock into small pieces induced by repeated tillage practices.  相似文献   

9.
Preservation of organic matter in soils depends on the chemical structure of organic compounds and on the surface properties of the mineral matrix. We tested the effect of mineral surface reactivity on organic matter decomposition by (i) investigating changes of organic matter composition in clay subfractions of an illitic Haplic Chernozem along a time series of fertilizer deprivation and (ii) simultaneously characterizing the reactivity of mineral surfaces. The soil was subjected to fertilizer deprivation for 18, 44 and 98 years, respectively. Mineral surface properties were characterized by selective dissolution of pedogenic oxides. The number of hydroxyls released after exposure to sodium fluoride was taken as an index for mineral surface reactivity. Organic soil constituents were determined by 13C cross‐polarization magic‐angle spinning nuclear magnetic resonance (13C CPMAS NMR). Clay subfractions had different mineral surface properties. The coarse fractions have more reactive surfaces and contain more organic carbon than the fine clay fractions. Mineral surface properties are constant over time and are not affected by fertilizer deprivation. Surface reactivity is a function of iron oxide density and controls carbon concentrations in the clay subfractions. Within the time frame of our investigation, alkyl C and aromatic C responded to the duration of fertilizer deprivation, but were indifferent to mineral surface reactivity. O–alkyl C seems to be protected by interactions with pedogenic oxides.  相似文献   

10.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

11.
The various iron fractions were quantified by selective dissolution (Fed, Feo, Fet) in four Red Mediterranean soils, developed on metarhyolite and metadolerite. They were similar in all profiles. A strong trend of iron removal from the surface horizon and of its subsequent illuvial translocation to the argillic horizons was observed. In all profiles, Feo was not related to the organic matter content indicating the Mediterranean xeric soil environment. The Feo/Fed ratio and the percentage of crystalline iron oxides (Fed-Feo) suggested that the pedoenvironment in which the profiles P1, P2 were formed, allowed the high crystallization of iron oxides. As indicated by the Fed/Fet values, the weathering process was more intense in the metarhyolite-developed soils. In contrast, the metadolerite-developed soils present conditions of poorly crystallized iron oxides and a lower degree of development.  相似文献   

12.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

13.
14.
The composition of functional light soil organic matter pools of arable Cambisols with a gradient in clay content was investigated. Soil texture differences originate from increasing loess admixture to the parent material (coarse‐grained tertiary sediments). Using density fractionation in combination with ultrasonic dispersion, two types of particulate organic matter (POM) were obtained: (1) free POM and (2) POM occluded in soil aggregates. Both POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C NMR spectroscopy. With increasing clay content the amount of organic carbon stored in the occluded POM fraction increased considerably, whereas the amounts of free POM were not related to the soil clay content. With increasing soil clay contents increasing proportions of O‐alkyl C and decreasing proportions of aryl C were found for both POM fractions. The occluded POM fraction showed a higher degree of degradation as indicated by lower amounts in O‐alkyl carbon. A lower degree of POM degradation was associated with higher clay contents. Higher soil clay contents promoted the conservation of POM with a low degree of alteration. This effect of soil texture was found to be highly significant when the aryl C : O‐alkyl C ratio was used as indicator for POM decomposition rather than the alkyl C : O‐alkyl C ratio.  相似文献   

15.
We tested the hypothesis whether organic matter in subsoils is a large contributor to organic carbon (OC) in terrestrial ecosystems and if survival of organic matter in subsoils is the result of an association with the soil mineral matrix. We approached this by analyzing two forest soil profiles, a Haplic Podzol and a Dystric Cambisol, for the depth distribution of OC, its distribution among density and particle‐size fractions, and the extractability of OC after destruction of the mineral phase by treatment with hydrofluoric acid (HF). The results were related to indicators of the soil mineralogy and the specific surface area. Finally, scanning electron microscopy combined with energy dispersive X‐ray spectroscopy (SEM‐EDX) was used to visualize the location of OC at mineral surfaces and associations with elements of mineral phases. The subsoils (B and C horizons) contained 40—50% of the soil OC including the organic forest floor layers. With increasing depth of soil profiles (1) the radiocarbon ages increased, and (2) increasing portions of OC were either HF‐soluble, or located in the density fraction d >1.6 g cm—3, or in the clay fraction. The proportions of OC in the density fraction d >1.6 g cm—3 were closely correlated to the contents of oxalate and dithionite‐citrate‐bicarbonate‐extractable Fe (r2 = 0.93 and 0.88, P <0.001). SEM‐EDX analyses suggested associations of OC with aluminum whereas silicon‐enriched regions were poor in OC. The specific surface area and the microporosity of the soil mineral matrix after destruction of organic matter were less closely correlated to OC than the extractable iron fractions. This is possibly due to variable surface loadings, depending on different OC inputs with depth. Our results imply that subsoils are important for the storage of OC in terrestrial ecosystems because of intimate association of organic matter with secondary hydrous aluminum and iron phases leading to stabilization against biological degradation.  相似文献   

16.
The organic carbon content of soil is positively related to the specific surface area (SSA), but large amounts of organic matter in soil result in reduced SSA as determined by applying the Brunauer–Emmett–Teller (BET) equation to the adsorption of N2. To elucidate some of the controlling mechanisms of this relation, we determined the SSA and the enthalpy of N2 adsorption of separates with a density > 1.6 g cm?3 from 196 mineral horizons of forest soils before and after removal of organic matter with NaOCl. Likewise, we investigated these characteristics before and after sorption of increasing amounts of organic matter to four mineral soil samples, oxides (amorphous Al(OH)3, gibbsite, ferrihydrite, goethite, haematite), and phyllosilicates (kaolinite, illite). Sorption of organic matter reduced the SSA, depending on the amount sorbed and the type of mineral. The reduction in SSA decreased at larger organic matter loadings. The SSA of the mineral soils was positively related to the content of Fe oxyhydroxides and negatively related to the content of organic C. The strong reduction in SSA at small loadings was due primarily to the decrease in the micropores to which N2 was accessible. This suggests preferential sorption of organic matter at reactive sites in or at the mouths of micropores during the initial sorption and attachment to less reactive sites at increasing loadings. The exponential decrease of the heat of gas adsorption with the surface loading points also to a filling or clogging of micropores at early stages of organic matter accumulation. Desorption induced a small recovery of the total SSA but not of the micropore surface area. Destruction of organic matter increased the SSA of all soil samples. The SSA of the uncovered mineral matrix related strongly to the amounts of Fe oxyhydroxides and the clay. Normalized to C removed, the increase in SSA was small in topsoils and illuvial horizons of Podzols rich in C and large for the subsoils containing little C. This suggests that micropores preferentially associate with organic matter, especially at small loadings. The coverage of the surface of the soil mineral matrix as calculated from the SSA before and after destruction of organic matter was correlated only with depth, and the relation appeared to be linear. We conclude that mineralogy is the primary control of the relation between surface area and sorption of organic matter within same soil compartments (i.e. horizons). But at the scale of complete profiles, the surface accumulation and stabilization of organic matter is additionally determined by its input.  相似文献   

17.
Phosphate sorption on topsoil and subsoil samples from different soils located in the eastern part of Germany was studied. Two models were fitted to sorption data obtained after 4 and 40 d of gentle shaking. The models differ with respect to the fractions of iron and aluminium (hydr)oxides that are considered and whether the phosphate initially sorbed in the soil is taken into zccount. Oxalate-extractable P, (Pox), appears to be a major part of the total soil P. The total P sorption measured, F, was predominantly related to the amounts of amorphous iron (Feox) and aluminium (Alox). A significant relation between crystalline iron (Fed– Feox) and total P sorption was not found. Reversibly adsorbed phosphate (Pi), measured after 40 d reaction time, was a function of clay content and content of amorphous iron and aluminium (hydr)oxides.  相似文献   

18.
Abstract

The 5 Msodium hydroxide (NaOH) chemical treatment was applied to the silt and clay fractions of three Chilean fertilized soils derived from volcanic materials (one Ultisol and two Andisols) in order to selectively concentrate iron oxides. The treatment was sequentially applied and results were followed by x‐ray diffraction and Mössbauer spectroscopy. In all samples, dissolution chemical treatment concentrated iron oxides in variable degrees; and both, Mössbauer spectra and x‐ray diffraction patterns were significantly improved after three successive hot NaOH treatments. Best results were obtained for the Ultisol sample which is the oldest soil with the lowest organic matter content. The Mössbauer spectrum after three NaOH treatments of Ultisol silt fraction reveals characteristic features of partially oxidized magnetite, leading to two probability profiles of the hyper‐fine field distribution: One of them due to mixed valence iron (Fe3+/2+) ions in octahedral sites [8=0.59 mm s‐1, 2≥ Q =0.02mm s ‐1, with a maximum hyper‐fine field at Bhf(max)=46.2 tesla]; the other distribution profile encompasses contribution from Fe3+ in tetrahedral sites [δ=0.30 mm s‐1, 2?Q =‐0.04 mm s‐1 , and Bhf(max)=48.2 tesla].  相似文献   

19.
Soil organic carbon and its sorptive preservation in central Germany   总被引:4,自引:0,他引:4  
Soils are increasingly viewed as a potential sink for atmospheric carbon. However, their use to meet CO2 emission reductions is problematic for there are knowledge gaps regarding the mechanisms involved in the sequestration of organic carbon (OC). There is evidence which suggests that OC concentrations are controlled by the mineralogy and related specific surface area (SSA) of a given soil. The goal of this study was to examine the importance of sorptive mechanisms on OC stabilization. The objectives were (i) to determine the SSA, clay mineralogy and dithionite‐ and oxalate‐extractable Fe and Al concentrations of several soils, and (ii) to analyse how these variables are related to OC concentrations. Five soils were sampled and analysed: two Umbrisols, a Stagnic Acrisol, an Anthrosol/Vertisol/Gleysol‐Chernozem and a Gleysol (FAO terminology), all located in Hesse, Germany. Oxalate‐extractable Fe and Al were found to be the best predictors of OC concentrations in the soils examined. Specific surface area correlated significantly with the OC content of the B and C horizons of one Umbrisol and the entire profile of the Anthrosol/Vertisol/Gleysol‐Chernozem. The relationship between SSA and OC concentrations is likely to be restricted to certain soils and might be a product of the sorptive capacity of Fe and Al oxides. We can assume that the available mineral surface area on oxides is a limiting factor in terms of a soil's capacity to sequester organic carbon. As such, attention should be paid to soil mineralogy and how this might limit the use of soils as a sink for atmospheric CO2.  相似文献   

20.

Purpose

The aim of the research was to determine the effect of lithogenic and pedogenic processes on the formation of Luvisols from the area of Vistula glaciation on the base of profile distribution of iron oxides and total iron in relation to texture and physicochemical properties. The indices of weathering of the soil material in genetic horizons were calculated, and changes in the content and forms of iron oxides were evaluated.

Materials and methods

The predominant type of soil in the study area is Luvisols under agricultural use, formed from silt formations on loam. The analyses were made applying the following methods: grain size composition using the sieve method and hydrometer method, the interpretation of the results was performed according to the World Reference Base for Soil Resources classification, the pH of soils was measured with the potentiometric method, C-organic with the Walkley-Black dichromate method, the content of the following iron forms was determined (total iron (Fet) after the mineralization of soils in the mixture of HF and HClO4 acids), free iron oxides were extracted using dithionite-citrate-bicarbonate method, and amorphous iron oxides after the ammonium oxalate extraction (using the Philips 9100PU apparatus). The clay mineralogy was estimated by X-ray diffraction analysis.

Results and discussion

It was observed that total iron enrichment occurs in argic horizons accompanied by iron depletion in luvic horizons, while the profile distribution of iron is similar to the distribution of clay. The (Fed/Fet) ratio indicates a low degree of weathering; the highest values were observed in argic (Bt) horizons, which confirms the effect of the process of pedogenesis on the value of that index. In the soils investigated, crystalline iron oxides generally dominate over the amorphous forms. The mineralogical composition of clay fraction separated from the upper part of soils was different as compared to the underlying material.

Conclusions

The results of the study showed that iron contents (together with the other indicators) and its forms can be used to distinguish soil layers of different origin. The depth distribution of Fed, Feo and Fet within soil profiles indicates that the soil material may be of different lithogenic origin in the studied pedons.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号