首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized a series of copolymers with different compositions of acrylonitrile (AN, 80–100 wt%), methyl acrylate (MA, 4–20 wt%) and itaconic acid (IA, 0–3 wt%) by using an efficient aqueous suspension polymerization, and have investigated the molecular structure and thermal stabilization behavior of PAN homopolymer, AN/MA-based bipolymers, and AN/MA/IA-based terpolymers by adopting 1H/13C-NMR and thermal FT-IR analyses. The viscosity-average molecular weight of the synthesized polymers were measured to be ~263,000 g/mol. The reactivity ratios of AN and MA for all the copolymers were evaluated to be 0.99 and 1.05, respectively. Accordingly, the output compositions of the synthesized copolymers were quite consistent with the input monomer compositions. The 13C NMR analysis revealed that all the synthesized polymers have an atactic chain configuration, regardless of the feed composition. The structural evolutions during the thermal stabilization process of the copolymers in air environment were characterized by monitoring the temperature-dependent changes of characteristic absorbance bands at 2240 cm-1 (C≡N), 1595 cm-1 (C=N) and 1660 cm-1 (C=O) with aid of thermal FT-IR spectroscopy. It was found that the IA unit in the terpolymers accelerated the oxidation and cyclization reactions, unlike the retarding effect of MA unit, and that the onset temperatures of the oxidation reaction of the copolymers with IA unit was lower than that of the cyclization reaction.  相似文献   

2.
N,N-diallyl-N,N-dimethylammonium chloride (DADMAC) and vinyl ether of monoethanolamine copolymer (VEMEA) was synthesized by radical polymerization in aqueous media using ammonium persulfate as initiator. Copolymers synthesis was carried out by varying monomer composition at low conversion level. The viscosity of high molecular weight products was measured in aqueous 1 M NaCl solution and it was increased with increasing DADMAC amounts in the copolymer due to increasing positive charge. The structure of the product was identified by FTIR, 1H, 13C-NMR spectroscopies and conductometric titration methods. We calculated monomer reactivity ratios with help of Finemann-Ross, Kelen-Tudos, and inverted Finemann-Ross methods. It was found that DADMAC is more reactive than VEMEA, therefore the amount of DADMAC in the copolymers always dominated regardless of the initial monomer ratio in solution and it was shown that the monomers are connected randomly in the polymer chain. The effect of various parameters such as monomer [M], initiator [I] concentrations, ratio of comonomers, etc. on polymerization was investigated systematically. So, the polymerization rate (Rp) equation was found to be Rp=k[M]2.6[I]0.6 where molar fractions of DADMAC and VEMEA was 90:10 and the temperature was 65 °C. Degree of polymerization was examined by using various monomers and initiator concentrations via the dilatometeric method. It was found that the polymerization rate increased directly with total monomer concentration and initiator content.  相似文献   

3.
The free radical solution polymerization of acrylonitrile (AN) with itaconic acid (IA) or methyl acrylate (MA) was carried out in dimethylsulfoxide (DMSO) using 2 2'-azobisisobutyronitrile (AIBN) as the initiator. Based on the monomer conversion versus time data, the copolymerization rate was retarded by IA but promoted by MA. The monomer sequence distribution was characterized by 13C NMR to explain the significant difference in the copolymerization kinetics of the ANIA and AN-MA copolymers. The results of the copolymer composition curves and 13C NMR spectral analysis illustrated that the penultimate model was suitable for describing the copolymerization behavior of AN-IA, and the terminal and penultimate models were adequate for AN-MA. The penultimate reactivity ratios, r MA , were ~2 times higher than r IA , indicating that the reactivity of AN-terminated radical having MA as the preceding group was higher than that with IA. Then, the corresponding content of triads sequence AN-AN-AN (AAA) in the AN-MA copolymers was higher than those in the AN-IA copolymers. The appearance of new resonance signals of the quaternary and methyl carbon indicated a higher content of IA in copolymers. The higher IA concentrations the lower viscosity-average molecular weight of the polymers. The decrease in the molecular weight was correlated to the formation of the oligomers.  相似文献   

4.
The new copolymers from different feed compositions of glycidyl methacrylate (GMA) and tetrahydrofurfuryl acrylate (THFA) were synthesized using free radical polymerization in toluene at 70±1 °C using benzoyl peroxide (BPO) as initiator. The polymers were characterized by 1H NMR, 13C NMR and FTIR spectroscopic techniques. The polydispersities of the copolymers suggest a strong tendency for chain termination by disproportionation. The glass transition temperature of the copolymers increases with increase in GMA content. The thermal stability of the copolymers increases with increase in THFA content. The copolymer compositions were determined using 1H NMR analysis. Reactivity ratios for GMA and THFA as determined by the Mao-Huglin method were r1=0.379 and r2=0.266. The results showed that all these copolymerizations are strictly linear systems describable by the Mayo-Lewis equation based on the terminal model and that accurate reactivity ratio data can be obtained.  相似文献   

5.
Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using1H-NMR, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.  相似文献   

6.
Radical copolymerization behavior of 4′-vinylbenzo-15-crown-5, a vinyl monomer having apendant 15-membered crown ether unit (VCE) with di(ethylene glycol) ethyl ether acrylate (DEGEEA) was carried out in toluene solution using 2,2-azobisisobutyronitrile (AIBN) as an initiator. The copolymers were characterized by means of FT-IR,1H-NMR, and13C-NMR. The reactivity ratio of VCE and DEGEEA, determined by Fineman-Ross and Kelen-Tudos method, gave values 0.55 for VCE, and 0.11 for DEGEEA respectively.  相似文献   

7.
Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC,1H-NMR, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above 160 °C to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the crosslinking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, NaH2PO2, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.  相似文献   

8.
Nylon 4/6 copolymers based on 2-pyrrolidone (C4) and ε-caprolactam (C6) were synthesized and characterized as part of ongoing efforts to develop thermally stable, melt-processable 2-pyrrolidone (C4) based Nylons. Copolymers of various compositions were synthesized at between 50 and 100 °C via the anionic ring opening polymerization of C4 and C6 using a potassium tert-butoxide catalyst and a benzoyl chloride initiator. The polymers were characterized by NMR spectroscopy, DSC, TGA, GPC, intrinsic viscosity measurements, and X-ray scattering (SAXS and WAXS). Their chemical compositions and sequence distributions were obtained by 1H- and 13C-NMR spectroscopies, respectively. X-ray scattering was used to investigate the lamellar morphologies and the crystal structures of solvent cast films of the copolymers. WAXS revealed the presence of α-phase crystals in the copolymers. TGA data coupled with molecular weight and sequence distribution information indicated that the polymers’ thermal stability depended on both their chemical composition and their sequence distribution.  相似文献   

9.
Core-shell fluorinated acrylate copolymers emulsion was thus synthesized via the core-shell emulsion polymerization with the fluorinated monomers and acrylic monomers as the main raw materials and its properties were studied. PFMA, the fluorinated acrylate monomers, was synthesized by the esterification of perfluorooctanoyl chloride (PFOC) and hydroxypropyl methacrylate (HPMA). Then the core-shell fluorinated acrylate copolymers emulsion with a poly(MMA/BA/St) core and a poly(PFMA/MMA/BA) shell was synthesized via a starved semi-continuous core-shell emulsion polymerization method by using KPS and sodium bicarbonate as the initiator/buffer system and SDS/Twain 80 as the commixture emulsifier. Lastly, the synthesized copolymers was applied as textile finishing agent for cotton textile. The results of FT-IR and NMR indicated that PFMA had been synthesized as expected and effectively combined in the emulsion copolymerization. The GPC, zeta potential, TEM and DSC showed that the particles had uniform spherical core-shell structure with a diameter of 65-150 nm, and the distribution and emulsion stability was satisfactory. As XPS, FESEM and AFM shown, a hydrophobic structure which was similar to the structure of the lotus leaf were formed and the surface hydrophobicity of the films can be improved. Based on the analysis of DSC, thermal stabilities of the films were enhanced with the increase of fluorine content. Besides, FESEM of textiles showed that the surface of treated textiles were smooth and the edges were clear and visible, indicating significant improvement of the performance on water and oil repellent.  相似文献   

10.
Statistical copolymers of 2-hydroxy-3-benzophenoxy propyl methacrylate (HBPPMA) and benzyl methacrylate (BzMA) in different feed ratios were synthesized by free radical copolymerization method at 60 °C in presence of AIBN initiator. The compositions of copolymer were estimated from 1H-NMR technique. The monomer reactivity ratios of HBPPMA and BzMA were calculated as r1 (rHBPPMA)=0.51±0.076 and r2 (rBzMA)=1.07±0.140 for Kelen-Tüdos method, and was estimated as r1=0.37±0.0006 and r2=0.64±0.0485 according to Fineman Ross equation. The average values estimated from the two methods showed that monomer reactivity ratio of benzyl methacrylate was a slightly high in comparison to HBPPMA. The copolymer system showed an azeotropic point, which is equal to M BzMA =m BzMA =0.43. DSC measurements showed that the Tg’s of poly(HBPPMA) and poly(BzMA) were 84 °C and 73 °C, respectively. The Tg in the copolymer system decreased with increase in benzyl methacrylate content. The decomposition temperature of poly(BzMA) and poly(HBPPMA) occurs in a single stage at about 207 °C and 260 °C, respectively. Those of HBPPMA-BzMA copolymer systems are between decomposition temperatures of two homopolymers. The dielectric constant, dielectric loss factor and electrical conductivity were investigated depend on the frequency of the copolymers. The highest dielectric constants depending on all the studied frequencies were recorded for the poly(HBPPMA) and the copolymer containing the highest HBPPMA unit. The dielectric constant for P(HBPPMA) and P(BzMA) at 1 kHz are 6.56 and 3.22, respectively. Also, those of copolymer systems were estimated between these two values. Similarly, poly(HBPPMA) and copolymers, which are prepared under the same conditions show the dissipation factor and conductivity as well.  相似文献   

11.
The inherent properties of rayon fibre have been changed with additional properties through graft copolymerization of acrylamide, AAm, by chemical method using ceric ammonium nitrate/nitric acid, (CAN/HNO3), as a redox initiator and γ-radiation induced mutual method. Reaction conditions such as monomer and initiator concentration, liquor ratio, temperature and time of reaction, amount of radiation dose have been optimized with respect to percentage of grafting. Maximum percentage of grafting (Pg), (40 %) using CAN/HNO3 was obtained at [CAN]=31.92×10?3 moles/l, [HNO3]=79.36×10?2 moles/l, [AAm]=14.07×102 moles/l in 20 ml of H2O at 45 °C within 120 min while in case of radiation induced method, maximum Pg (30 %) was obtained at higher monomer concentration (28.14×10?2 moles/l) and time (180 min) in 10 ml of H2O at room temperature with total dose exposure of 11.178 kGy. The graft copolymers were characterized by FTIR, thermogravimetric and scanning electron micrographic analysis. Swelling behaviour in water, methanol, ethanol, acetone and DMF and dyeing and flame retarding properties of rayon fibre and grafted rayon fibre were investigated. Percent dye uptake (71.8 %) was found to be higher than that observed for the pristine fibre (57.4 %) and the grafted fibre after post phosphorylation reaction showed excellent flame retarding properties.  相似文献   

12.
The poly (8, 11-bis (3, 4-ethylenedioxythiophen-2-yl) acenaphtho [1, 2-b] quinoxaline) (PBEAQ), was synthesized by solid-state polymerization using ferric chloride (III) as an oxidant in high yield. The structure of the monomer and polymer was elucidated by FT-IR, UV-vis absorption spectrum and element analysis. PBEAQ has an [η] value of 0.42 dl g?1 at 25 °C in H2SO4 (w=98 %). The electrochemical performance of PBEAQ was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy with three-electrode cell configuration in acidic (1 M H2SO4), alkaline (6 M KOH) and organic (0.1 M tetraethylammoniumtetrafluoroborate (TEABF4) acetonitrile solution) electrolytic solutions and PBEAQ exhibits good performance in acidic medium.  相似文献   

13.
Nylon 4, which can be synthesized by anionic ring-opening polymerization, has good mechanical properties and a very high affinity for water owing to its high polarity. On the other hand, despite its high melting temperature, the polymer has not been commercialized because of its low thermal stability. In this study, copolymerization of 2-pyrrolidone (C4) with 2-piperidone (C5) was performed to reduce the melting temperature of Nylon 4 homopolymer. The copolymerization reaction was controlled by changing the comonomer content, catalyst content, temperature, initiator content, and reaction time. The Nylon copolymers were characterized by 1H-nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The hydrophilic properties of Nylon 4 and its copolymers were evaluated by surface free energy analysis and moisture regain measurement. The intrinsic viscosity and polymerization yield of Nylon 4 increased with increasing catalyst concentration until 5 mole% and decreased with further increases in catalyst loading. The proton NMR spectrum revealed the composition of the Nylon 4/5 copolymer to be 62.5 % C4 moiety at a 5:5 comonomer feed ratio. The melting temperature of the Nylon 4/5 copolymers decreased considerably according to the composition. The moisture regain of the Nylon 4/5 copolymer was higher than 6.4 % even at 77.3 % C4 in composition.  相似文献   

14.
A novel cellulose-based porous adsorbent with high adsorption capacity for methylene blue (MB) was prepared by free radical polymerization methods. The obtained polymer grafting rate and dye removal efficiency are as high as 338.64 % and 97.74 %, respectively, when the dosage of monomer is 4.5 g, the polymerization condition is 3 h at 70 °C. The cellulose-based adsorbent showed high mechanical properties and good flexibility. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for methylene blue was 1734.816 mg g-1 at pH 9.0 at 313 K, which is higher than the values observed for other adsorbents. Scanning electron microscopy (SEM) showed that the cellulose-based adsorbent exhibits a typical well-defined porous and interconnected three-dimensional framework structure, which is benefits to dye adsorption. The adsorption kinetics (pseudo first-order, pseudo-second-order, and intraparticle diffusion models) was also studied, and the pseudo-second-order model fitted MB adsorption better than the pseudo-first-order and intraparticle diffusion models at different initial dye concentrations (500-3000 mg l -1). The novel polyacrylic acid-grafted quaternized cellulose (PAA-g-QC) adsorbent is thus potentially useful for the treatment of dye-contaminated wastewater.  相似文献   

15.
Living cationic polymerization behaviors of isobutyl vinyl ethers (IBVE), initiated by iodomethyl methyl ether (IMME)/zinc iodide (ZnI2) have been investigated. The polymerization was carried out at 0, −15, and −30°C in toluene. It was found that the rate of polymerization increased as the IMME concentration increased and decreased as temperature decreased. 100% conversion was always achieved without exception. Furthermore, the number-average molecular weight of polymers increased in direct proportion to monomer conversion. The molecular weights of polymers were in good agreement with the theoretical values, calculated on the basis that one polymer chain was formed by one IMME molecule and the values of polydispersity index are always less than 1.2, revealing the living nature. The living nature was also confirmed by synthesis of poly(IBVE-b-TBVE) by subsequent monomer addition of t-butyl vinyl ether (TBVE).  相似文献   

16.
In the present work, graft copolymers of acrylamide onto guar gum were synthesized by free radical polymerization using potassium bromate/thiourea redox initiating system. The guar gum and guar gum-g-polyacrylamide were characterized by infrared spectroscopy and thermogravimetric analysis. It was found that the guar gum-g-polyacrylamid was thermally more stable than pure guar gum. The grafting ratio, grafting efficiency, add-on, and conversion increased with the concentration of bromate and acrylamide, whereas they decreased with increasing the concentration of guar gum. The grafting ratio and grafting efficiency showed maximum value at the concentration of thiourea and hydrogen ions of 3.2×10-3 mol dm-3 and 4.0×10-3 mol dm-3, respectively, but decreased with further increasing the thiourea and hydrogen ions concentrations. The increase in temperature from 30 to 45 °C resulted in increasing the grafting ratio while decreasing the conversion. The optimum reaction time for the graft copolymerization was found to be 2 h. Compared to the parent guar gum, the graft copolymer showed higher water swelling capacity and metal ion sorption, as well as better flocculant behaviors.  相似文献   

17.
An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSCTG) analysis, respectively. When the polymerization temperature increased from 41 °C to 65 °C, the molecular weight ([`(M)] w )(\overline M _w ) of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from 18% to 63%, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and [`(M)] w\overline M _w was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from 30 °C to 65 °C. This suggests the dependence of viscosity upon [`(M)] w\overline M _w is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.  相似文献   

18.
Poly(trimethylene 2,6-naphthalate) (PTN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two-step melt copolymerization process of dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) with 1,3-propanediol (PD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structure, thermal property, and hydrophilicity of these copolymers were studied by proton nuclear magnetic resonance (1H-NMR) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and by contact angle, moisture content, and instantaneous elastic recovery measurements. The intrinsic viscosity and the instantaneous elastic recovery of the PTN/PEG copolymers increased with increasing PEG molecular weight and content, whereas the glass transition, melting, and cold crystallization temperatures, and the heat of fusion of the PTN/PEG copolymers all decreased with increasing PEG molecular weight or content. The thermal stability of the copolymers was not affected by PEG molecular weight or content. The hydrophilicity, as determined by contact angle and moisture content measurements of the copolymer films, was significantly improved with increasing PEG molecular weight and content.  相似文献   

19.
Poly(vinyl acetate) (PVAc)/poly(vinyl alcohol)(PVA)/montmorillonite (MMT) clay nanocomposite microspheres with a core/shell structure have been developed via a suspension polymerization approach. In order to prepare the PVAc/MMT and PVAc/PVA/MMT nanocomposite microspheres, which are promising precursor of PVA/MMT nanocomposite microspheres, suspension polymerization of vinyl acetate with organophilic MMT and heterogeneous saponification were conducted. A quaternary ammonium salt, cetyltrimethylammonium bromide, was mixed with the MMT in the monomer phase prior to the suspension polymerization. The rate of conversion decreased with an increase in MMT concentration. The incorporation of MMT into the PVAc was verified by FT-IR spectroscopy. Organic vinyl acetate monomers were intercalated into the interlayer regions of organophilic clay hosts and followed by suspension polymerization. Partially saponified PVA/MMT nanocomposite microspheres with a core/shell structure were successfully prepared by heterogeneous saponification.  相似文献   

20.
In this study, poly[2-(N, N-dimethyl amino)ethyl methacrylate] (PDMAEMA) was prepared by bulk polymerization using AIBN as an initiator. Aqueous PDMAEMA solution was then purified by hollow fiber ultrafiltration membrane technology to remove oligomers. PDMAEMA/polysulfone (PSF) positively charged nanofiltration (NF) membrane was developed by interfacial polymerization by using PSF ultrafiltration membrane as the substrate, PDMAEMA aqueous solution as the coating solution and p-xylylene dichloride dissolved in n-heptane as the organic crosslinker. Effects of substrate material, concentration of monomer, pH value of PDMAEMA, coating time and crosslinking time were then carefully examined on the separation properties of the prepared NF membrane. Data suggested that the rejection rate of the composite NF membrane to 1 g/l of MgSO4 was around 86.7 %, and the water flux was about 18.4 L·m−2·h−1. Therefore, the developed NF membrane is suitable for rejection and desalination of alkaline dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号