首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Current production from natural forests will not satisfy future world demand for timber and fuel wood, and new land management options are required.

Aims

We explore an innovative production system that combines the production of short rotation coppice in wide alleys with the production of high-value trees on narrow strips of land; it is an alternative form of alley cropping which we propose to call ‘alley coppice’. The aim is to describe this alley coppice system and to illustrate its potential for producing two diverse products, namely high-value timber and energy wood on the same land unit.

Methods

Based on a comprehensive literature review, we compare the advantages and disadvantages of the alley coppice system and contrast the features with well-known existing or past systems of biomass and wood production.

Results

We describe and discuss the basic aspects of alley coppice, its design and dynamics, the processes of competition and facilitation, issues of ecology, and areas that are open for future research.

Conclusion

Based on existing knowledge, a solid foundation for the implementation of alley coppice on suitable land is presented, and the high potential of this system could be shown.  相似文献   

2.

? Context

Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales.

? Aims

We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China.

? Method

Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development.

? Results

BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests.

? Conclusion

To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.  相似文献   

3.

? Context

Maritime pine (Pinus pinaster Aiton) is one of the most important Portuguese species, growing in pure stands ranging from even-aged to multi-aged structures. Current growth and yield models were developed only for even-aged, managed stands and/or for very specific regions of Portugal.

? Aims

This paper focuses on the validation of the existing size-class model PBRAVO, adapted to even-aged stands, and on the subsequent development of a single tree distance-dependent growth and yield model (PBIRROL), both in distance-independent and distance-dependent versions, for uneven-aged stands.

? Methods

The new model is composed of four modules, each with a set of sub-models for: tree variable prediction, tree volume prediction, future tree list prediction and growth projection.

? Results

The evaluation of the PBRAVO and PBIRROL models showed that the new model gives more accurate predictions. Moreover, medium-term simulations provided consistent and logical predictions.

? Conclusion

It was verified that individual tree models are more suited to simulate poorly managed uneven-aged stands than diameter distribution models. No clear superiority of distance-dependent models was found over models using just distance-independent measures of inter-tree competition.  相似文献   

4.

Context

Harvesting of Mediterranean oak coppice forests has been progressively suspended on a share of cover over the last decades. Positive growth trend in outgrown coppices no longer harvested on short rotations now drives natural forest restoration on wide areas, and it represents a potential carbon sink in view of global warming.

Aims

Our goals were to estimate carbon (C) and nitrogen (N) content per compartment in two deciduous oak outgrown coppice forests, aged differently and growing under unequal site quality, to verify whether C concentration across compartments is in agreement with the conventional conversion rate of 0.5.

Methods

Ecosystem C and N pools were assessed by multiplying the whole coppice mass (combining specific allometric functions, root-to-shoot ratio, and soil sampling) by respective C and N concentrations.

Results

The results point out that the largest percentage of N was stored in 15-cm topsoil (84.06 and 73.34 % at the younger and older site, respectively), whereas the proportion of organic ecosystem C pool was more variable, as a consequence of the amount and allocation of phytomass. We found that, in most cases, C concentration was less than the conventional conversion rate of 0.5, especially in deadwood, O layer, and root compartments.

Conclusion

The findings provide further knowledge of C and N storage into these new built-up forest types and the evidence that a detailed analysis may get higher accuracy in the pools estimate, producing a more reliable outlook on dynamics and climate change mitigation ability of these systems.  相似文献   

5.

? Context

Biomass prediction is important when dealing for instance with carbon sequestration, wildfire modeling, or bioenergy supply. Although allometric models based on destructive sampling provide accurate estimates, alternative species-specific equations often yield considerably different biomass predictions. An important source of intra-specific variability remains unexplained.

? Aims

The aims of the study were to inspect and assess intra-specific differences in aboveground biomass of Pinus brutia Ten. and to fill the gap in knowledge on biomass prediction for this species.

? Methods

Two hundred one trees between 2.3 and 55.8 cm in diameter at breast height were sampled throughout the eastern- and southernmost natural distribution area of P. brutia, in Middle East, where it forms different stand structures. Allometric equations were fitted separately for two countries. The differences in biomass prediction at tree, stand, and forest level were analyzed. The effect of stand structure and past forest management was discussed.

? Results

Between-country differences in total aboveground biomass were not large. However, differences in biomass stock were large when tree components were analyzed separately. Trees had higher stem biomass and lower crown biomass in dense even-aged stands than in more uneven-aged and sparse stands.

? Conclusion

Biomass and carbon predictions could be improved by taking into account stand structure in biomass models.  相似文献   

6.

Context

The dipterocarp forests in the Central Highland of Vietnam are threatened by overharvesting. In addition, wildfires frequently affect their dynamics. Sustainable management of this unique forest type is of important concern.

Aims

This study aims at providing a first set of operational information for forest management with a model-based approach. Specifically, we (a) evaluate selected cutting regimes with focus on maximum sustainable yield, (b) explore transformation times from a given to a desired forest state, and (c) preliminarily assess wildfire effects on yield.

Methods

A size class model was developed as a tool to address these issues. Various diameter distributions defined by the q factor concept were used as possible desired equilibrium states to be assessed.

Results

Maximum yields were estimated between 3.9 and 2.7?m3?ha?1?year?1, depending on site quality. Based on data from overharvested stands, time for reaching desired equilibria ranged between 20 and 60?years. In stands with frequent severe wildfires, the long-term yield may decrease by 40%.

Conclusions

Our results suggest the model being an effective tool for simulating effects of treatment alternatives. We conclude that, despite a poor information basis, it is necessary to develop and refine such models for supporting sustainable forest management in Vietnam.  相似文献   

7.

Context

Natural regeneration with broadleaved species and reforestation with coniferous trees are two widely practiced forest regeneration strategies after timber harvesting. They lead to different tree species composition and may cause different understory biodiversity, but the effects on ground bryophyte composition and diversity are not well-known.

Aims

We tested whether natural regeneration with broadleaved species and reforestation with spruce induced different diversities of the ground bryophyte populations 20–40 years after old-growth spruce forest clearcutting in the subalpine regions of southwestern China.

Methods

Differences between natural stands and plantations were compared through the analysis of 13 paired stands, with 78 plots, 390 shrub/herb quadrats, and a total of 1,560 bryophyte quadrats.

Results

Naturally regenerated forests were characterized by lower density and cover and lower tree height but higher herbaceous plant height, shrub cover, and bryophyte diversity. They also harbored many more ground bryophytes. The species richness of pleurocarpous mosses and fans, mats, and turfs were significantly higher in naturally regenerated forests. Frequency difference analysis demonstrated that more bryophyte species preferred ground habitats in naturally regenerated forests than in plantations (116 vs. 48 species). The canonical correspondence analysis indicated that stand structure attributes were more important determinants of ground bryophyte diversity and abundance.

Conclusion

Natural regeneration and reforestation resulted in large differences in ground bryophyte populations. A larger diversity was observed in the former case, and natural regeneration practices can be an effective measure for the protection of ground bryophyte diversity after clearcutting.  相似文献   

8.

Context

The requirement for rebuilding forecrop stands besides replacement of meadow vegetation with forest plants and formation of soil humus is the presence of a compatible ectomycorrhizal (ECM) fungal community.

Aims

This study aims to assess ectomycorrhizal fungi diversity associated with silver fir (Abies alba Mill.) seedlings regenerating in silver fir stands and Scots pine forecrops.

Methods

One-year-old seedlings were sampled in six study sites: three mature fir forests and three pine forests. ECM fungi were identified by polymerase chain reaction amplification and sequencing of the internal transcribed spacer of rDNA.

Results

The mean mycorrhizal colonization exceeded 90 %. Thirty-six ectomycorrhizal taxa were identified in fir stands and 23 in pine forecrops; ten out of these species were common to both stands. The fungal communities were different between study sites (R?=?0.1721, p?=?0.0001). Tomentella stuposa was the only species present at all sites.

Conclusion

Silver fir seedlings in Scots pine forecrops supported smaller ECM fungal communities than communities identified in mature silver fir stands. Nevertheless, fungal colonization of seedling roots was similar in both cases. This suggests that pine stands afforested on formerly arable land bear enough ECM species to allow survival and growth of silver fir seedlings.  相似文献   

9.

? Context

Despite the economic importance of Castanea sativa Mill. in northwest Spain, studies of its growth and yield are practically non-existent.

? Aims

A compatible system formed by a taper function, a total volume equation, and a merchantable volume equation was developed for chestnut (C. sativa Mill.) coppice stands in northwest Spain.

? Methods

Data from 203 destructively sampled trees were used for the adjustment. Outliers were removed with a non-parametric local adjustment, providing a final data set of measurements taken from 3,188 sections which was used to test five taper models (compatible and non-compatible). A second-order continuous autoregressive error structure was used to model the error term and account for autocorrelation. Presence of multicollinearity was evaluated with the condition number. Comparison of the models was carried out using overall goodness-of-fit statistics and graphical analysis.

? Results

Results show that the models developed by Fang et al. in For Sci 46: 1–12, 2000 and Kozak in For Chron 80, N 4: 507–515, 2004 were superior to other equations in predicting diameter for chestnut coppice stands.

? Conclusion

The compatible volume system developed by Fang et al. in For Sci 46: 1–12, 2000 was finally selected as it provided the best compromise between describing stem profile and also estimating merchantable height, merchantable volume, and total volume and therefore provides the first specific tool for more effective management of chestnut coppice stands.  相似文献   

10.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

11.

? Context

The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

? Aims

This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

? Methods

We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

? Results

For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

? Conclusions

These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

12.

Context

The current fire regime threatens black pine (Pinus nigra Arn.) persistence in the Mediterranean Basin, which recommends larger-scale fuel treatments. Prescribed burning is an option for stand protection but its use in young stands (which are particularly at risk) is hindered by the scarce knowledge on post-fire tree survival.

Aims

The objectives were to characterize bark thickness as a fire-resistance trait in P. nigra and to describe how post-fire tree survival responds to tree size and fire effects in a 16-year-old plantation.

Methods

Bark thickness was related to diameter at breast height and height in the stem. Metrics describing tree size and stem and crown damage were measured 1?year after prescribed burning in 259 trees. Tree survival was modeled with logistic regression and Classification and Regression Tree analysis.

Results

Bark thickness increased linearly with diameter at breast height (dbh) and decreased with height in the stem. Tree survival was primarily a function of crown injury. Stem damage was an influent factor in small trees.

Conclusion

Due to thinner bark and lower tolerance to crown damage, young P. nigra trees are less fire-resistant than other Mediterranean pines, e.g., Pinus pinaster. Prescribed fire should not be attempted if dbh <10?cm. Mechanical clearing is the treatment of choice in young stands with a significant shrub layer.  相似文献   

13.

? Context

Snow gliding is a downhill motion of snow on the ground; observations have shown gliding to be possible not only on open slopes but also in forest stands. Larch stands, with their low canopy density and open forest structure with clearings and gaps, are particularly prone to high glide rates. Snow gliding may have negative effects on juvenescent trees which can be damaged by extraction from the ground.

? Aim

The goal of this study was to determine whether snow gliding depends on forest cover (canopy) and size of clearings.

? Methods

Snow gliding was measured during eight winter periods at six measuring positions (ranging from ‘dense forest’ to ‘open slope’) in and beside a larch stand in the Stubai Valley, Tyrol, Austria.

? Results

The results showed that gliding is strongly influenced by forest cover. Snow gliding increases with decreasing canopy density. The difference between the six measuring positions was highly significant (p?<?0.005).

? Conclusion

The identified glide cracks on at least two measuring positions, indicating extreme glide rates and, therefore, strong negative effects on juvenescent trees. To prevent glide rates of a magnitude such as this requires a mature forest with at least 300 stems/ha.  相似文献   

14.

?Context

Selective logging followed by natural regeneration is rarely employed for restocking subtropical evergreen broad-leaved forests in East Asia compared with the use of clear-cutting.

?Aims

To clarify the succession of these forests, the effects of selective logging on stand structure, species diversity, and community similarity were studied in a mature and regenerating forest in Okinawa, Japan.

?Methods

Four study plots were established, and trees ≥1.2 m height were identified by species name, tree height, and diameter at breast height.

?Results

The results showed that the species composition of regenerating forest was similar to mature forest; however, the former had a greater species density and Shannon–Wiener index than the latter. Castanopsis sieboldii and Distylium racemosum, the predominant trees in the mature forest, continued to dominate the regenerating forest, with a broad layer distribution. High Sørensen and Jaccard community similarity indices for mature and regenerating forest indicated that the regeneration occurred in a progressive succession.

?Conclusion

The similar species composition and stand structure for both mature and regenerating forest, and the higher species diversity for the latter, provided no evidence of forest degeneration and suggested that the regenerating forest may develop into a stand similar to preselective logging forest.  相似文献   

15.

Context

Implementing nature-based silviculture requires understanding the structural and compositional changes that occur in forested stands under known disturbance types and intensities.

Aims

The objectives were to assess the (a) resistance of hardwood forests to change, (b) their trajectory of recovery following disturbance, and (c) how closely resulting forests resemble original forests.

Methods

We characterized tree structure and composition at three points in time (pre-disturbance, 1-year post-disturbance, and ~15 years following disturbance) along a harvesting disturbance gradient created by removing trees in different forest canopy strata.

Results

Significant differences to pre-disturbance conditions were noted immediately post-harvest for tree basal area, density, species richness, and tree species composition; treatment differences were observed for all parameters except diversity. Plots exposed to the least extreme harvesting disturbances (cutting small and intermediate trees) had returned to pre-disturbance conditions for most parameters after 15 years, while the most extreme harvesting disturbance (cutting large trees) had not yet recovered.

Conclusions

Although not initially resistant, Central Appalachian eastern hardwoods are fairly resilient to the removal of trees in the subcanopy or a mixture of the subcanopy and canopy; only the removal of solely canopy trees (i.e., high grading) and complete removal (i.e., clearcutting) appear to impose harvesting disturbances to which these forests may not be resilient.  相似文献   

16.

? Context

An inequitable distribution of the costs and benefits of carbon forestry could undermine its role in tackling climate change, but safeguarding local livelihoods could undercut its effectiveness.

? Aims

We simulate a reforestation program in a densely populated locality in central Mexico to analyze indirect land-use change, or leakage, associated with the program and its implications for local livelihoods.

? Methods

An agent-based, general equilibrium model simulates scenarios that deconstruct the sources of leakage and livelihood outcomes.

? Results

Simulations reveal how conditions linking land, labor, and food markets determine the costs and benefits of reforestation and simultaneously the potential for leakage. Leakage is lowest in remote and poorly integrated localities where declining wages foster local food production while discouraging consumption. Since leakage is tied to consumption, there is a trade-off between the program’s effectiveness and an equitable outcome.

? Conclusion

An ideal strategy could target those localities with few remaining forests, where a program might lead to agricultural intensification rather than expanding the agricultural frontier. Alternatively, the scheme could incorporate remaining forests to avoid deforestation while encouraging reforestation. An uneven distribution of costs and benefits, where some stakeholders may draw benefits from others’ losses, could nevertheless set the stage for conflict. Acknowledging these trade-offs should help design a politically feasible program that is effective, efficient, and equitable.  相似文献   

17.

Context

Reliable estimates of wood density (WD) within individual trees could maximize the value of Pinus massoniana for specific end-use.

Aim

We examined and quantified the axial patterns of WD in trees with different social status in the stands.

Methods

Wood disks were sampled at the bottom, breast height, and middle of each 1-m sections from 108 stems, harvesting from three social classes in subtropical forests. A mixed-effects model was designed to quantify axial variation.

Results

The WD at different height was significantly different from the whole-stem WD (WWD) except the relative height of 0.1. An overall decrease of 133.8 kg m?3 in WD was found from stem base to top. WD was significantly influenced by relative heights, tree age, and social class. WD of each relative height in mature trees was significantly higher than that of younger trees. Tree social class can affect WD development in the axial direction at age classes 2 and 3. Combining the fixed plus random effects, the final model explained 91 % of the observed variation in WD.

Conclusion

The WD development patterns in the axial direction vary considerably among tree age, diameter at breast height, and social class. To distinguish and supply timber for specific end-uses, we should use the axial variation in disk WD (DWD) instead of WWD directly. The accurate predictions of WD provided by the model could be used to optimally classify logs into different product classes and maximize economic benefits. We can use DWD at the relative height of 0.1 instead of WWD of a single tree.  相似文献   

18.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

19.

? Key message

Long-term strict protection of woodland communities may lead to their compositional simplification and homogenisation.

? Context

In the past, it has often been postulated that structures and processes typical for natural forests should be mimicked by silvicultural activities in the case of managed tree stands.

? Aims

To determine which features and traits of natural woodland communities (alongside typical old-growth attributes) should be imitated in managed forests, as well as which should not (and for what reasons).

? Methods

Tree data from five permanent study plots (of a total area of 15.44 ha) established in 1936 in the core area of the Bia?owie?a National Park (NE Poland) are used to calculate several quantitative indices describing the temporal dynamics (in terms of stand structure and composition) of eight major woodland community types.

? Results

Most structural attributes revealed rather high stability over time. In contrast to these, during the observation period, noticeable changes in the composition of particular Bia?owie?a woodland communities have been taking place, related to declining occurrence and reduced roles characteristic for a large number of tree species.

? Conclusion

In many ways, natural forests can serve as an important model for managed forest stands. However, in certain circumstances, silvicultural treatments counteracting natural developmental trends may appear to be indispensable, especially when more diverse and stable tree species composition (at a given spatial and temporal scale) is indicated or desirable.
  相似文献   

20.

? Context

A 20-year-old Nelder wheel planted with hoop pine (Araucaria cunninghamii Aiton ex D.Don) and Queensland maple (Flindersia brayleyana F.Muell.) in 18 spokes and 8 rings represents nominal point densities of 3,580, 2,150, 1,140, 595, 305, 158, 82, and 42 stems/ha and offers an opportunity to examine competition and spatial interaction between these two species.

? Aims

This study aimed to evaluate the intraspecific and interspecific competition between two contrasting tree species and to determine the distance over which competition can be observed.

? Methods

Competition was estimated using Hegyi’s index, implemented using the Simile visual modeling environment, and calibrated using nonlinear least squares with PEST.

? Results

Interactions were detected between pairs of stems closer than D ij ?<?40(d i ?+?d j ) where D is distance (in centimeters) and d is stem diameter (in centimeters diameter at breast height). F. brayleyana trees surrounded by A. cunninghamii trees experience negligible competition, whereas A. cunninghamii surrounded by F. brayleyana trees suffer strong competition.

? Conclusion

Forty times diameter offers a useful guide to the extent of competition in even-aged stands planted with these species. Competition can be observed empirically when pairs of trees are closer than 40 times the sum of their diameters, but the intensity of the competition may vary considerably with species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号