首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.  相似文献   

2.
Boss AP 《Science (New York, N.Y.)》1995,267(5196):360-362
The sensitivities of astrometric and radial velocity searches for extrasolar planets are strongly dependent on planetary masses and orbits. Because most nearby stars are less massive than the sun, the first detection is likely to be of a Jupiter-mass planet orbiting a low-mass star, with a possible theoretical expectation being that Jupiter-like planets will be found much closer [inside the Earth-sun separation of 1 astronomical unit (AU)] to these low-luminosity stars than Jupiter is to the sun (5.2 AU). However, radiative hydrodynamic models of protoplanetary disks around low-mass stars (of 0.1 to 1 solar mass) show that Jupiter-like planets should form at distances (approximately 4 to 5 AU) that are only weakly dependent on the stellar mass.  相似文献   

3.
Present theories of terrestrial planet formation predict the rapid ;;runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.  相似文献   

4.
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.  相似文献   

5.
The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.  相似文献   

6.
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.  相似文献   

7.
The recent confirmation of the discovery of a satellite of the minor planet 532 Herculina indicates that other similar anomalous sightings are probably also due to satellites, which must therefore be numerous and commonplace. There are now 23 candidate satellites for eight minor planets, and no one of these minor planets occulting a star has failed to show evidence of at least one secondary event. Such companions are gravitationally stable but apparently have rapid tidal evolution rates.  相似文献   

8.
About 30% of detected extrasolar planets exist in multiple-star systems. The standard model of planet formation cannot easily accommodate such systems and has difficulty explaining the odd orbital characteristics of most extrasolar giant planets. We demonstrate that the formation of terrestrial-size planets may be insulated from these problems, enabling much of the framework of the standard model to be salvaged for use in complex systems. A type of runaway growth is identified that allows planetary embryos to form by a combination of nebular gas drag and perturbations from massive companions-be they giant planets, brown dwarfs, or other stars.  相似文献   

9.
The existence of a dominant massive planet, Jupiter, in our solar system, although perhaps essential for long-term dynamical stability and the development of life, may not be typical of planetary systems that form around other stars. In a system containing two Jupiter-like planets, the possibility exists that a dynamical instability will develop. Computer simulations suggest that in many cases this instability leads to the ejection of one planet while the other is left in a smaller, eccentric orbit. In extreme cases, the eccentric orbit has a small enough periastron distance that it may circularize at an orbital period as short as a few days through tidal dissipation. This may explain the recently detected Jupiter-mass planets in very tight circular orbits and wider eccentric orbits around nearby stars.  相似文献   

10.
Determining a planet's rotation period can be difficult if the planet lacks a solid surface. However, for planets with an internal magnetic field, emissions at radio wavelengths are modulated by the planet's rotation rate. The latest results from the Cassini spacecraft seem to indicate that Saturn's rotation rate has slowed down by 6 minutes since the Voyager 1 and 2 spacecraft flew by the planet in 1980 and 1981, but it is unclear whether a slowdown has in fact occurred. Future data collected by Cassini may be able to resolve the question.  相似文献   

11.
In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.  相似文献   

12.
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.  相似文献   

13.
Comparisons are made between the volatile inventories of the terrestrial planets, including Pioneer Venus data, and the predictions of three classes of theories for the origin of planetary atmospheres. Serious difficulties arise for the primary atmosphere and external source hypotheses. The grain accretion hypothesis can account for the trends in the volatile inventory from Venus to Earth to Mars, if volatiles were incorporated into planet-forming grains at nearly the same temperature for all of these planets, but at systematically lower pressures in the regions of planet formation farther from the center of the solar nebula.  相似文献   

14.
Ward WR 《Science (New York, N.Y.)》1973,181(4096):260-262
Large-scale variations in the obliquity of the planet Mars are produced by a coupling between the motion of its orbit plane due to the gravitational perturbations of the other planets and the precession of its spin axis which results from the solar torque exerted on the equatorial bulge of the planet. The obliquity oscillates on a time scale of approximately 1.2 x 10(5) years. The amplitude of this oscillation itself varies periodically on a time scale of 1.2 X 10(6) years. The present-day obliquity is approximately 25.1 degrees. The maximum possible variation is from about 14.9 to 35.5 degrees. Signtificant climatic effects must be associated with the phenomenon.  相似文献   

15.
The Digital Orrery has been used to perform an integration of the motion of the outer planets for 845 million years. This integration indicates that the long-term motion of the planet Pluto is chaotic. Nearby trajectories diverge exponentially with an e-folding time of only about 20 million years.  相似文献   

16.
This week an international team of astronomers announced the discovery of four new moons of Saturn, restoring the ringed planet to its status as commander of the largest retinue of satellites in the solar system. Their appearance should help researchers understand not just how the new moons were formed but also how the giant planets themselves came to be.  相似文献   

17.
The infrared interferometer spectrometer on Voyager 2 obtained thermal emission spectra of Neptune with a spectral resolution of 4.3 cm(-1). Measurements of reflected solar radiation were also obtained with a broadband radiometer sensitive in the visible and near infrared. Analysis of the strong C(2)H(2) emission feature at 729 cm(-1) suggests an acetylene mole fraction in the range between 9 x 10(-8) and 9 x 10(-7). Vertical temperature profiles were derived between 30 and 1000 millibars at 70 degrees and 42 degrees S and 30 degrees N. Temperature maps of the planet between 80 degrees S and 30 degrees N were obtained for two atmospheric layers, one in the lower stratosphere between 30 and 120 millibars and the other in the troposphere between 300 and 1000 millibars. Zonal mean temperatures obtained from these maps and from latitude scans indicate a relatively warm pole and equator with cooler mid-latitudes. This is qualitatively similar to the behavior found on Uranus even though the obliquities and internal heat fluxes of the two planets are markedly different. Comparison of winds derived from images with the vertical wind shear calculated from the temperature field indicates a general decay of wind speed with height, a phenomenon also observed on the other three giant planets. Strong, wavelike longitudinal thermal structure is found, some of which appears to be associated with the Great Dark Spot. An intense, localizd cold region is seen in the lower stratosphere, which does not appear to be correlated with any visible feature. A preliminary estimate of the effective temperature of the planet yields a value of 59.3 +/- 1.0 kelvins. Measurements of Triton provide an estimate of the daytime surface temperature of 38(+3)(-4) kelvins.  相似文献   

18.
Hubble Space Telescope imaging observations of two nearby brown dwarfs, DENIS-P J1228.2-1547 and Kelu 1, made with the near-infrared camera and multiobject spectrometer (NICMOS), show that the DENIS object is resolved into two components of nearly equal brightness with a projected separation of 0.275 arc second (5 astronomical units for a distance of 18 parsecs). This binary system will be able to provide the first dynamical measurement of the masses of two brown dwarfs in only a few years. Upper limits to the mass of any unseen companion in Kelu 1 yield a planet of 7 Jupiter masses aged 0. 5 x 10(9) years, which would have been detected at a separation larger than about 4 astronomical units. This example demonstrates that giant planets could be detected by direct imaging if they exist in Jupiter-like orbits around nearby young brown dwarfs.  相似文献   

19.
Mars, like Earth, may have received its volatiles in the final stages of accretion, as a veneer of volatile-rich material similar to C3V carbonaceous chondrites. The high (40)Ar/(36)Ar ratio and low (36)Ar abundance on Mars, compared to data for other differentiated planets, suggest that Mars is depleted in volatiles relative to Earth-by a factor of 1.7 for K and 14 other moderately volatile elements and by a factor of 35 for (36)Ar and 15 other highly volatile elements. Using these two scaling factors, we have predicted martian abundances of 31 elements from terrestrial abundances. Comparison with the observed (36)Ar abundance suggests that outgassing on Mars has been about four times less complete than on Earth. Various predictions of the model can be checked against observation. The initial abundance of N, prior to escape, was about ten times the present value of 0.62 ppb, in good agreement with an independent estimate based on the observed enhancement in the martian (15)N/(14)N ratio (78,79). The initial water content corresponds to a 9-m layer, close to the value of >/=13 m inferred from the lack of an (18)O/(16)O fractionation (75). The predicted crustal Cl/S ratio of 0.23 agrees exactly with the value measured for martian dust (67); we estimate the thickness of this dust layer to be about 70 m. The predicted surface abundance of carbon, 290 g/cm(2), is 70 times greater than the atmospheric CO(2) value, but the CaCO(3) content inferred for martian dust (67) could account for at least one-quarter of the predicted value. The past atmospheric pressure, prior to formation of carbonates, could have been as high as 140 mbar, and possibly even 500 mbar. Finally, the predicted (129)Xe/(132)Xe ratio of 2.96 agrees fairly well with the observed value of 2.5(+2)(-1) (85). From the limited data available thus far, a curious dichotomy seems to be emerging among differentiated planets in the inner solar system. Two large planets (Earth and Venus) are fairly rich in volatiles, whereas three small planets (Mars, the moon, and the eucrite parent body-presumably the asteroid 4 Vesta) are poorer in volatiles by at least an order of magnitude. None of the obvious mechanisms seems capable of explaining this trend, and so we can only speculate that the same mechanism that stunted the growth of the smaller bodies prevented them from collecting their share of volatiles. But why then did the parent bodies of the chondrites and shergottites fare so much better? One of the driving forces behind the exploration of the solar system has always been the realization that these studies can provide essential clues to the intricate network of puzzles associated with the origin of life and its prevalence in the universe. In our own immediate neighborhood, Mars has always seemed to be the planet most likely to harbor extraterrestrial life, so the environment we have found in the vicinity of the two Viking landers is rather disappointing in this context. But the perspective we have gained through the present investigation suggests that this is not a necessary condition for planets at the distance of Mars from a solar-type central star. In other words, if it turns out that Mars is completely devoid of life, this does not mean that the zones around stars in which habitable planets can exist are much narrower than has been thought (114). Suppose Mars had been a larger planet-the size of Earth or Venus-and therefore had accumulated a thicker veneer and had also developed global tectonic activity on the scale exhibited by Earth. A much larger volatile reservoir would now be available, there would be repeated opportunities for tapping that reservoir, and the increased gravitational field would limit escape from the upper atmosphere. Such a planet could have produced and maintained a much thicker atmosphere, which should have permitted at least an intermittently clement climate to exist. How different would such a planet be from the present Mars? Could a stable, warm climate be maintained? It seems conceivable that an increase in the size of Mars might have compensated for its greater distance from the sun and that the life zone around our star would have been enlarged accordingly.  相似文献   

20.
Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号