首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many potential treatments for Alzheimer's disease target amyloid-beta peptides (Abeta), which are widely presumed to cause the disease. The microtubule-associated protein tau is also involved in the disease, but it is unclear whether treatments aimed at tau could block Abeta-induced cognitive impairments. Here, we found that reducing endogenous tau levels prevented behavioral deficits in transgenic mice expressing human amyloid precursor protein, without altering their high Abeta levels. Tau reduction also protected both transgenic and nontransgenic mice against excitotoxicity. Thus, tau reduction can block Abeta- and excitotoxin-induced neuronal dysfunction and may represent an effective strategy for treating Alzheimer's disease and related conditions.  相似文献   

2.
One hundred years ago a small group of psychiatrists described the abnormal protein deposits in the brain that define the most common neurodegenerative diseases. Over the past 25 years, it has become clear that the proteins forming the deposits are central to the disease process. Amyloid-beta and tau make up the plaques and tangles of Alzheimer's disease, where these normally soluble proteins assemble into amyloid-like filaments. Tau inclusions are also found in a number of related disorders. Genetic studies have shown that dysfunction of amyloid-beta or tau is sufficient to cause dementia. The ongoing molecular dissection of the neurodegenerative pathways is expected to lead to a true understanding of disease pathogenesis.  相似文献   

3.
Plasticity of hippocampal circuitry in Alzheimer's disease   总被引:19,自引:0,他引:19  
Two markers of neuronal plasticity were used to compare the response of the human central nervous system to neuronal loss resulting from Alzheimer's disease with the response of rats to a similar neuronal loss induced by lesions. In rats that had received lesions of the entorhinal cortex, axon sprouting of commissural and associational fibers into the denervated molecular layer of the dentate gyrus was paralleled by a spread in the distribution of tritiated kainic acid-binding sites. A similar expansion of kainic acid receptor distribution was observed in hippocampal samples obtained postmortem from patients with Alzheimer's disease. An enhancement of acetylcholinesterase activity in the dentate gyrus molecular layer, indicative of septal afferent sprouting, was also observed in those patients with a minimal loss of cholinergic neurons. These results are evidence that the central nervous system is capable of a plastic response in Alzheimer's disease. Adaptive growth responses occur along with the degenerative events.  相似文献   

4.
脑小血管病(CSVD)是一组累及到脑小动脉、微动脉、静脉和毛细血管多病因和病理机制的疾病,主要包含腔隙性脑梗死或腔隙性卒中、脑白质疏松症、Binswanger病和脑微出血.CSVD占全世界卒中的20%,是血管性痴呆和阿尔茨海默病(AD)等认知障碍和痴呆最常见原因.CSVD可促进AD发生,防治脑血管疾病的他汀药物可能对AD有作用.该文着重阐述了AD和CSVD关系,并对AD与腔隙性脑梗死、脑白质疏松症、Binswanger病和脑微出血之间的关系进行了综述,同时分析了CSVD在认知障碍和痴呆发生中的作用.  相似文献   

5.
Alzheimer's disease is hypothesized to be caused by an imbalance between β-amyloid (Aβ) production and clearance that leads to Aβ accumulation in the central nervous system (CNS). Aβ production and clearance are key targets in the development of disease-modifying therapeutic agents for Alzheimer's disease. However, there has not been direct evidence of altered Aβ production or clearance in Alzheimer's disease. By using metabolic labeling, we measured Aβ42 and Aβ40 production and clearance rates in the CNS of participants with Alzheimer's disease and cognitively normal controls. Clearance rates for both Aβ42 and Aβ40 were impaired in Alzheimer's disease compared with controls. On average, there were no differences in Aβ40 or Aβ42 production rates. Thus, the common late-onset form of Alzheimer's disease is characterized by an overall impairment in Aβ clearance.  相似文献   

6.
Gene dosage of the amyloid beta precursor protein in Alzheimer's disease   总被引:16,自引:0,他引:16  
The progressive deposition in the human brain of amyloid filaments composed of the amyloid beta protein is a principal feature of Alzheimer's disease (AD). Densitometric analysis of Southern blots probed with a complementary DNA for the amyloid protein has been carried out to determine the relative dosage of this gene in genomic DNA of 14 patients with AD, 12 aged normal subjects, and 10 patients with trisomy 21 (Down syndrome). Whereas patients in the last group showed the expected 1.5-fold increase in dosage of this gene, none of the patients with AD had a gene dosage higher than that of the normal controls. These results do not support the hypothesis that the genetic defect in AD involves duplication of a segment of chromosome 21 containing the amyloid gene. Alternative mechanisms for the brain-specific increase in amyloid protein deposition in AD should be considered.  相似文献   

7.
Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatin-like immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.  相似文献   

8.
Neurofibrillary degeneration is an important pathological finding in senile and presenile dementia of the Alzheimer type. Experimentally, aluminum induces neurofibrillary degeneration in neurons of higher mammals. Aluminum concentrations approaching those used experimentally have been found in some regions of the brains of patients with Alzheimer's disease.  相似文献   

9.
Family study of platelet membrane fluidity in Alzheimer's disease   总被引:8,自引:0,他引:8  
The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in labeled platelet membranes, an index of membrane fluidity, identifies a prominent subgroup of patients with Alzheimer's disease who manifest distinct clinical features. In a family study, the prevalence of this platelet membrane abnormality was 3.2 to 11.5 times higher in asymptomatic, first-degree relatives of probands with Alzheimer's disease than in neurologically healthy control subjects chosen without regard to family history of dementia. The pattern of the platelet membrane abnormality within families was consistent with that of a fully penetrant autosomal dominant trait. Thus, this abnormality of platelet membranes may be an inherited factor that is related to the development of Alzheimer's disease.  相似文献   

10.
Cats reared during the first 5 months of life in environments that contain contours of a single orientation show a diminished ability to resolve gratings of the orthogonal orientation in later life. It is argued that these perceptual deficits result from changes in the organization of the visual cortex induced by the selected early visual input.  相似文献   

11.
Examination of temporal lobe structures from Alzheimer patients reveals a specific cellular pattern of pathology of the subiculum of the hippocampal formation and layers II and IV of the entorhinal cortex. The affected cells are precisely those that interconnect the hippocampal formation with the association cortices, basal forebrain, thalamus, and hypothalamus, structures crucial to memory. This focal pattern of pathology isolates the hippocampal formation from much of its input and output and probably contributes to the memory disorder in Alzheimer patients.  相似文献   

12.
beta-Secretase plays a critical role in beta-amyloid formation and thus provides a therapeutic target for Alzheimer's disease. Inhibitor design has usually focused on active-site binding, neglecting the subcellular localization of active enzyme. We have addressed this issue by synthesizing a membrane-anchored version of a beta-secretase transition-state inhibitor by linking it to a sterol moiety. Thus, we targeted the inhibitor to active beta-secretase found in endosomes and also reduced the dimensionality of the inhibitor, increasing its local membrane concentration. This inhibitor reduced enzyme activity much more efficiently than did the free inhibitor in cultured cells and in vivo. In addition to effectively targeting beta-secretase, this strategy could also be used in designing potent drugs against other membrane protein targets.  相似文献   

13.
The incidence of Alzheimer's disease (AD) and that of prion disorders (PrD) could not be more different. One-third of octogenarians succumb to AD, whereas Creutzfeldt-Jakob disease typically affects one individual in a million each year. However, these diseases have many common features impinging on the metabolism of neuronal membrane proteins: the amyloid precursor protein APP in the case of AD, and the cellular prion protein PrPC in PrD. APP begets the Abeta peptide, whereas PrPC begets the malignant prion protein PrPSc. Both Abeta and PrPSc are associated with disease, but we do not know what triggers their accumulation and neurotoxicity. A great deal has been learned, however, about protein folding, misfolding, and aggregation; an entirely new class of intramembrane proteases has been identified; and unsuspected roles for the immune system have been uncovered. There is reason to expect that prion research will profit from advances in the understanding of AD, and vice versa.  相似文献   

14.
15.
16.
Alzheimer's disease is a form of localized amyloidosis characterized by cerebral cortical amyloid plaques, neurofibrillary tangles, and amyloid deposits within the walls of leptomeningeal vessels. Although most cases of Alzheimer's disease are sporadic, kindreds with autosomal-dominant inheritance of the syndrome suggest that a single mutation may be important in pathogenesis. Direct sequencing of DNA from a family with autopsy-proven Alzheimer's disease revealed a single amino acid substitution (Phe for Val) in the transmembrane domain of the amyloid precursor protein. This mutation correlates with the presence of Alzheimer's disease in all patients in this study, and may be the inherited factor causing both amyloid fibril formation and dementia.  相似文献   

17.
The possibility that Alzheimer's disease (AD) is caused by overexpression or duplication of one or more genes on chromosome 21 has been raised by the observation of AD-like neuropathologic changes in individuals with Down syndrome and by the mapping of both the defect for familial AD and the amyloid beta protein gene to this autosome. Possible duplication on chromosome 21 was investigated in both familial and sporadic AD by means of restriction fragment length polymorphisms for the amyloid and SODI loci, as well as for DNA markers in the vicinity of the familial AD defect and in the critical Down syndrome region of chromosome 21. No evidence of increased DNA dosage was observed in either brain or leukocytes of patients with inherited or sporadic forms of AD. Duplication of these regions is therefore not a frequent event in either form of AD. Furthermore, no significant allelic association was detected between AD and any of the loci, including the amyloid and SODI genes, providing no support for the hypothesis that defects in these specific genes are the primary cause of AD.  相似文献   

18.
With the recently cloned complementary DNA probe, lambda Am4 for the chromosome 21 gene encoding brain amyloid polypeptide (beta amyloid protein) of Alzheimer's disease, leukocyte DNA from three patients with sporadic Alzheimer's disease and two patients with karyotypically normal Down syndrome was found to contain three copies of this gene. Because a small region of chromosome 21 containing the ets-2 gene is duplicated in patients with Alzheimer's disease, as well as in karyotypically normal Down syndrome, duplication of a subsection of the critical segment of chromosome 21 that is duplicated in Down syndrome may be the genetic defect in Alzheimer's disease.  相似文献   

19.
为探讨表没食子儿茶素没食子酸酯(EGCG)对阿尔茨海默症(Alzheimer's disease,AD)模型动物认知功能缺陷、海马神经发生和突触功能损伤影响,6月龄APP/PS1双转基因小鼠和C57小鼠分别给予EGCG (20mg· kg-1·d-1)或生理盐水腹腔注射,连续给药5周.利用Morris水迷宫试验和新物体识别试验检测EGCG对AD模型小鼠空间学习记忆能力影响,免疫组织化学方法检测EGCG对AD模型小鼠海马新生神经干细胞数量、新生神经元数量以及突触密度影响.Morris水迷宫结果显示,EGCG能显著缩短AD模型小鼠逃避潜伏期和游泳路径,并显著增加其跨越平台次数(P<0.01).新物体识别试验结果显示,EGCG能够显著增加AD模型小鼠新物体识别指数(P<0.05).免疫组化结果显示,EGCG能够显著增加AD模型小鼠海马齿状回区域新生神经干细胞数量和新生神经元数量(P<0.01),同时EGCG也显著增加AD模型小鼠海马CA1区域突触密度(P<0.01).表明EGCG可以促进AD模型小鼠海马神经发生、提高突触密度,从而提高学习记忆能力,为EGCG用于临床治疗AD及痴呆患者提供新分子机制和理论依据.  相似文献   

20.
The formation of clusters of altered axons and dendrites surrounding extracellular deposits of amyloid filaments (neuritic plaques) is a major feature of the human brain in both aging and Alzheimer's disease. A panel of antibodies against amyloid filaments and their constituent proteins from humans with Alzheimer's disease cross-reacted with neuritic plaque and cerebrovascular amyloid deposits in five other species of aged mammals, including monkey, orangutan, polar bear, and dog. Antibodies to a 28-amino acid peptide representing the partial protein sequence of the human amyloid filaments recognized the cortical and microvascular amyloid of all of the aged mammals examined. Plaque amyloid, plaque neurites, and neuronal cell bodies in the aged animals showed no reaction with antibodies to human paired helical filaments. Thus, with age, the amyloid proteins associated with progressive cortical degeneration in Alzheimer's disease are also deposited in the brains of other mammals. Aged primates can provide biochemically relevant models for principal features of Alzheimer's disease: cerebrovascular amyloidosis and neuritic plaque formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号