首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 RS (where RS is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with approximately 3% N+. Over the A and B rings, we found an ionosphere in which O2+ and O+ are dominant, which suggests the possible existence of a layer of O2 gas similar to the atmospheres of Europa and Ganymede.  相似文献   

2.
The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.  相似文献   

3.
The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.  相似文献   

4.
We show that the plasma and magnetic fields in the inner region of Saturn's plasma disk rotate in synchronism with the time-variable modulation period of Saturn's kilometric radio emission. This relation suggests that the radio modulation has its origins in the inner region of the plasma disk, most likely from a centrifugally driven convective instability and an associated plasma outflow that slowly slips in phase relative to Saturn's internal rotation. The slippage rate is determined by the electrodynamic coupling of the plasma disk to Saturn and by the drag force exerted by its interaction with the Enceladus neutral gas torus.  相似文献   

5.
6.
The Pioneer 11 results for Saturn's large heat output, small magnetic field, and near-axisymmetry of the field may all be explained by an interior model in which the helium is undergoing phase separation and is nonuniformly distributed. Substantial depletion of helium from the atmosphere is predicted.  相似文献   

7.
Saturn's E ring is revealed by image processing of direct photographs of the 1966 edge-on presentation of the planet's ring plane. Two different techniques were used: scanning with an image quantizer operated in the derivative mode and computer-enhanced background subtraction from digitized images.  相似文献   

8.
In August 2009 the Sun illuminated Saturn's rings from almost exactly edge-on, revealing a subtle corrugation that extends across the entire C ring. This corrugation's amplitude is 2 to 20 meters and its wavelength is 30 to 80 kilometers. Radial trends in the corrugation's wavelength indicate that this structure--like a similar corrugation previously identified in the D ring--results from differential nodal regression within a ring that became tilted relative to Saturn's equator plane in 1983. We suggest that this initial tilt arose because interplanetary debris struck the rings. The corrugation's radial extent implies that the impacting material was a dispersed cloud of debris instead of a single object, and the corrugation's amplitude indicates that the debris' total mass was ~10(11) to 10(13) kilograms.  相似文献   

9.
The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.  相似文献   

10.
11.
The camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences. It also shares properties with the polar vortices on Venus, such as polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV's combination of properties is unique among vortices in the solar system.  相似文献   

12.
The spokes are intermittently appearing radial markings in Saturn's B ring that are believed to form when micrometer-sized dust particles are levitated above the ring by electrostatic forces. First observed by the Voyagers, the spokes disappeared from October 1998 until September 2005, when the Cassini spacecraft saw them reappear. The trajectories of the charged dust particles comprising the spokes depend critically on the background plasma density above the rings, which is a function of the solar elevation angle. Because the rings are more open to the Sun now than when Voyager flew by, the charging environment above the rings has prevented the formation of spokes until very recently. We show that this notable effect is capable of stopping spoke formation entirely and restricting the size of the particles in the spokes.  相似文献   

13.
The origin of Saturn's narrow G ring has been unclear. We show that it contains a bright arc located 167,495.6 +/- 1.3 km from Saturn's center. This longitudinally localized material is trapped in a 7:6 corotation eccentricity resonance with the satellite Mimas. The cameras aboard the Cassini spacecraft mainly observe small (1 to 10 micrometers) dust grains in this region, but a sharp decrease in the flux of energetic electrons measured near this arc requires that it also contain larger (centimeter- to meter-sized) bodies whose total mass is equivalent to that of a approximately 100-meter-wide ice-rich moonlet. Collisions into these bodies may generate dust, which subsequently drifts outward to populate the rest of the G ring. Thus, the entire G ring could be derived from an arc of debris held in a resonance with Mimas.  相似文献   

14.
15.
Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere. INMS neutral measurements made during the ring encounter are dominated by a background signal.  相似文献   

16.
Saturn was imaged between 8 and 24.5 micrometers at approximately 3000-kilometer resolution with the Keck I Telescope. Saturn's atmosphere has zonal temperature bands, which are mostly uncorrelated with visible cloud reflectivity, strong 100-millibar zonal temperature oscillations near 32 degrees S, a warm south polar cap, and a compact hot point within 3 degrees of the south pole.  相似文献   

17.
A recently published infrared spectrum of Saturn's rings resembles our laboratory spectra of water frosts. Furthermore, there are discrepancies between the ring spectrum and ammonia frost spectra in the 2- to 2.5-micro region. These discrepancies render unlikely a reported ideti tification of ammonia frost in the ring spectrum.  相似文献   

18.
19.
Godfrey DA 《Science (New York, N.Y.)》1990,247(4947):1206-1208
The rotation rates of the interiors of the outer planets are normally derived from their periodic radio emissions. However, recent observations of both Jupiter and Saturn have revealed surface features with periods close to those derived for the interiors. In the study reported here, this process is carried one stage further, with the derivation of a rotation rate for the spot associated with Satum's polar hexagon, which is simultaneously within and more accurate than the Saturnian radio period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号