首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Utilisation of nitrogen (N) has been closely related to increases in crop productivity. However, not all crops respond similarly and the objective of this study is to identify physiological processes that determine responses to N supply for maize and sunflower. Grain yield in maize (range: 210–1255 g m−2) was greater and more responsive to N supply than in sunflower (106–555 g m−2 in carbohydrate equivalents) over a wide range of total N uptake (3–>20 g N m−2). In maize, differences in grain yield among levels of N supply were associated more with variation in biomass than in harvest index. In sunflower, differences in grain yield (in carbohydrate equivalents) among levels of N supply were related similarly to variation in both biomass and harvest index. The decrease in biomass production with decreasing N supply was associated with decreases in both radiation interception and radiation use efficiency (RUE). Decreased interception was due to effects of N supply on reducing canopy leaf area, whereas the reduced RUE was associated with decreased SLN. Total biomass production in maize was more responsive to N supply than in sunflower. The major determinants of the differences in response of biomass accumulation to N supply found between maize and sunflower are: (i) sunflower tends to maintain SLN with increase in partitioning of N to leaves under N limitation whereas maize tends to maintain leaf area with increase in partitioning of biomass to leaves and (ii) the ability of maize to maintain N uptake following cessation of leaf production.  相似文献   

2.
The aim of the work was to study changes in the yield and nutritional characteristics of whole crop semi-leafless field pea over two growing seasons in the Po plain, Italy. Samples of two cultivars (Baccara and Sidney) were collected from flowering to grain maturity. The developmental stage, yield, dry matter (DM) content, crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), starch, water soluble carbohydrates (WSC), gross energy (GE), organic matter digestibility (OMD) and the net energy for lactation (NEL) were determined at each harvest. The forage characteristics were regressed on the growing degree days (GDD) with 4.4 °C as the base temperature. The DM yield increased with advancing maturity from 0.5 to 8.91 Mg ha−1, while the CP decreased from 261 to 159 g kg−1 DM. During the whole growth cycle the GE, OMD, NEL and milk forage units (milk FU) were almost steady. No differences were observed between the cultivars for any of the measured parameters. At grain maturity, the crop produced over 4.0 Mg ha−1 DM of grain. The CP, starch and WSC of the grain did not show any differences between the cultivars or years. The data showed that the nutritive quality of the forage of the semi-leafless grain pea harvested as a whole crop for ensiling purposes did not diminish with maturity and could help improve the self-sufficiency of dairy farms, in terms of home-grown protein forages.  相似文献   

3.
Miscanthus × giganteus, a perennial rhizomatous grass commercially used as a biofuel crop was grown in a field experiment on a silty clay loam soil for 14 years. There were 3 rates of fertilizer nitrogen (N), none (control), 60 kg N ha−1 yr−1 and 120 kg N ha−1 yr−1 as cumulative applications. The crop was harvested in winter and dry matter yield measured. N did not influence yield. Yield, which increased for the first 6 years, decreased in years 7 and 8, but then increased again and was highest in the 10th year averaging 17.7 t ha−1 across all treatments. Differences in total production over the14 years were only 5% between the highest and lowest yielding treatments and averaged 178.9 t ha−1 equivalent to 12.8 t ha−1 yr−1. In the first 10 harvests, 92% of dry matter was stem. Although the study showed N fertilizer was not required, it is considered that an application of 7 kg P ha−1 yr−1 and 100 kg K ha−1 yr−1 would avoid soil reserve depletion. Pesticides were not required every year and the crop can be considered as low input with a high level of sustainability for at least 14 years.  相似文献   

4.
The objective of this study was to develop a mechanistic model for simulating the genotypic and environmental variation in rice growth and yield based on measured plant N accumulation. The model calibrations and evaluations were conducted for rice growth and yield data obtained from a cross-locational experiment on 9 genotypes at 7 climatically different locations in Asia. The rough dry grain yield measured in the experiment ranged from 71 to 1044 g m−2 over the genotypes and locations. An entire process model was developed by integrating sub-models for simulating the processes of leaf area index development, partitioning of nitrogen within plant organs, vegetative biomass growth, spikelet number determination, and yield. The entire process model considered down-regulation of photosynthesis caused by limited capacity for end-product utilization in growing sink organs by representing canopy photosynthetic rate as a function of sugar content per unit leaf nitrogen content. The model well explained the observed genotypic and environmental variation in the dynamics of above-ground biomass growth (for validation dataset, R2 = 95), leaf area index development (R2 = 0.82) and leaf N content (R2 = 0.85), and spikelet number per unit area (R2 = 0.67) and rough grain yield (R2 = 0.66), simultaneously. The model calibrations for each sub-model and the entire process model against observed data identified 10 genotype-specific model parameters as important traits for determining genotypic differences in the growth attributes. Out of the 10 parameters, 5 were related to the processes of phenological development and spikelet sterility, considered to be major determinants of genotypic adaptability to climate. The other 5 parameters of stomatal conductance, radiation extinction coefficient, nitrogen use efficiency in spikelet differentiation, critical leaf N causing senescence, and potential single grain mass had significant influence on the yield potential of genotypes under given climate conditions.  相似文献   

5.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate the accumulation of phosphorus (P) at five sites differing geographically and climatically in China. The results showed that, in soils without P added, the concentration of soil P extracted by 0.5 mol L−1 NaHCO3 at pH 8.5 (Olsen-P) decreased with cultivation time until about 3 mg kg−1, afterwards it remained constant. The trend of decrease in Olsen-P in soils without P added could be described by an exponential function of time. The concentration of Olsen-P in soils with P fertilizers increased with cultivation time and the model of accumulation of Olsen-P in soils could be described using P application rate, crop yield and soil pH. The accumulation rate of Olsen-P in the long-term wheat–maize crop rotation experiments was 1.21 mg kg−1 year−1 on average. If the target yield of wheat and maize is 10 ton ha−1 in the soil with pH 8, the increasing rates of Olsen-P in soils as estimated by the model will be 0.06, 0.36, 0.66, 0.95, 1.25 and 1.55 mg kg−1 year−1 when P application rates are 30, 40, 50, 60, 70 and 80 kg P ha−1 year−1, respectively. The models of accumulation of Olsen-P in soils were validated independently and could be used for the accurate prediction of accumulation rate of Olsen-P in soils with wheat–maize rotation systems. Also the application of the model was discussed for best management of soil P in agricultural production and environment protection.  相似文献   

6.
Three different lignocellulosic energy crops (a local clone of Arundo donax L., Miscanthus x giganteus Greef et Deu. and Cynara cardunculus L. var. altilis D.C. cv. “Cardo gigante inerme”) were compared over 5 years (2002–2007) for crop yield, net energy yield and energy ratio. In a hilly interior area of Sicily (Italy), two different irrigation treatments (75 and 25% of ETm restoration) and two nitrogen fertilization levels (100 and 50 kg ha−1) were evaluated in a split-plot experiment. In the fourth and fifth years of the field experiment (2005–2007) no fertilizer or irrigation was used.From crop establishment to the third year, above ground dry matter yield increased over all studied factors, in A. donax from 6.1 to 38.8 t ha−1 and in M. x giganteus from 2.5 to 26.9 t ha−1. Fifteen months after sowing, C. cardunculus yielded 24.7 t ha−1 of d.m. decreasing to 8.0 t ha−1 in the third year. In the fourth and fifth years, above ground dry matter yields of all crops decreased, but A. donax and M. x giganteus still maintained high productivity levels in both years. By contrast the yield of C. cardunculus yield fell to less than 1 t ha−1 of d.m. by the fourth year.Energy inputs of A. donax and M. x giganteus were higher in the year of establishment than that of C. cardunculus (34 GJ ha−1 for A. donax and M. x giganteus and 12 GJ ha−1 for C. cardunculus), mainly due to irrigation.Net energy yield showed low or negative values in the establishment year in A. donax and M. x giganteus. In the second and third year, net energy yield of A. donax was exceptionally high (487.2 and 611.5 GJ ha−1, respectively), whilst M x giganteus had lower values (232.2 and 425.9 GJ ha−1, respectively). M x giganteus attained its highest net energy yield in the fourth year (447.2 GJ ha−1). Net energy yield of C. cardunculus reflected energy output of the crop, being high in the first compared to subsequent years (364.7, 277.0 and 119.2 GJ ha−1, respectively for the first, second and third years).A significant effect of the different irrigation treatments was noted on all the studied parameters in all species. Conversely, only A. donax was affected by nitrogen fertilization.  相似文献   

7.
A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of nutrients per grain (e.g., content). Zinc (Zn) showed the largest genotypic variation both in concentration (ranging from 19 to 145 mg kg−1) and content (ranging from 0.4 to 4.1 μg per grain). The environment effect was the most important source of variation for grain protein concentration (GPC) and for many mineral nutrients, explaining between 37 and 69% of the total sums of squares. Genotype by environment (G × E) interaction accounted for between 17 and 58% of the total variation across the minerals. GPC and sulfur correlated very significantly with iron (Fe) and Zn. Various spelt genotypes have been identified containing very high grain concentrations of Zn (up to 70 mg kg−1), Fe (up to 60 mg kg−1) and protein (up to 30%) and showing high stability across various environments. The results indicated that spelt is a highly promising source of genetic diversity for grain protein and mineral nutrients, particularly for Zn and Fe.  相似文献   

8.
2019~2020年以陕单 650(中熟)和东单 60(晚熟)为材料,设置 4个种植密度 6.0×104、 7.5×104、 9.0×104和10.5×104株/hm2,研究密度对玉米产量及子粒含水率的影响。结果表明,增密可以提高不同熟期玉米品种的产量,陕单 650在密度为 9.0×104株/hm2时最优产量为 18 083.5 kg/hm2,东单 60在密度 7.5×104株/hm2时最优产量为17 472.9 kg/hm2。两个品种粒重及子粒含水率随密度的增大而减小,陕单 650达到最大灌浆速率的天数、平均灌浆速率较东单 60均早 4 d和高 0.06 g/d;陕单 650和东单 60子粒平均脱水速率为 0.98%/d和 0.93%/d,陕单 650在生理成熟 4 d后子粒含水率迅速降至 25%。当密度为 9.0×104株/hm2时,陕单 650的叶片干物质转运率明显高于东单 60。通过适度增密提高产量、缩短生育期降低子粒水分的技术途径,协同实现陕西春玉米密植高产机械子粒收获生产。  相似文献   

9.
Yield and yield components of saffron under different cropping systems   总被引:1,自引:0,他引:1  
This study was conducted to evaluate yield and yield components of saffron (Crocus sativus L.) in response to (i) production system (PS) (irrigated vs. non-irrigated); (ii) corm size (CS) (medium −2.25 to 3 cm diameter vs. small corms <2.25 cm diameter); (iii) planting depth (PD) (10 cm vs. 20 cm); and iv) planting density (PDEN) (51 corms m−2 vs. 69 corms m−2).This fully replicated multifactorial design was started in August 2000, and carried through November 2003, when the fourth saffron harvest took place. The total and average fresh weight of stigmas, and the number of flowers were measured at each harvest.Results indicate that three of the four factors tested (PS, CS and PD) had a significant effect on the quantitative yield during the two most productive flowering years (2001 and 2002) and on the total flowering. Irrigated cultivation, medium size corms and 10 cm planting depth had the greatest effect in increasing the quantitative production of saffron.Yield was also affected by planting density in contrasting ways. Whereas at high PDEN yield increased per unit of surface, at low PDEN, yield increased with respect to the initial number of corms planted.The fresh weight of stigmas per flower yield component, an important aspect that determines the quality of the spice, was enhanced when corms were planted at 20 cm depth and when irrigation was applied to the crop.  相似文献   

10.
Estimating maize nutrient uptake requirements   总被引:6,自引:0,他引:6  
Generic, robust models are needed for estimating crop nutrient uptake requirements. We quantified and modeled grain yield–nutrient uptake relations in maize grown without significant biotic and abiotic stresses. Grain yield and plant nutrient accumulation in above-ground plant dry matter (DM) of commercial maize hybrids were measured at physiological maturity in on-station and on-farm experiments in Nebraska (USA), Indonesia, and Vietnam during 1997–2006. These data were used to model the nutrient requirements for yields up to 20 Mg ha−1 using the QUEFTS (QUantitative Evaluation of the Fertility of Tropical Soils) approach. The model required estimation of two boundary lines describing the minimum and maximum internal nutrient efficiencies of N, P and K (IE, kg grain per kg nutrient in plant DM), which were estimated at 40 and 83 kg grain kg−1 N, 225 and 726 kg grain kg−1 P and 29 and 125 kg grain kg−1 K, respectively. The model predicted a linear increase in grain yield if nutrients are taken up in balanced amounts of 16.4 kg N, 2.3 kg P and 15.9 kg K per 1000 kg of grain until yield reached about 60–70% of the yield potential. The corresponding IEs were 61 kg grain kg−1 N, 427 kg grain kg−1 P and 63 kg grain kg−1 K. The model predicted a decrease in IEs when yield targets approached the yield potential limit. A spherical model was derived from QUEFTS model outputs and found to be particularly suitable for practical applications such as estimating fertilizer needs. The proposed spherical model offers generality across environments and management practices, allowing users to estimate the optimal N, P and K uptake requirements based on two inputs: estimated yield potential and yield target. Further improvements in modeling the relationship between N uptake and grain yield can be made by taking into account differences in harvest index. Accuracy in the simulation of N uptake using the spherical model was improved from an RMSE of 35 kg N ha−1 to 25 kg N ha−1 when harvest index was accounted for, suggesting that the relationship between N uptake and actual yield is affected by both yield potential and efficiency in biomass partitioning.  相似文献   

11.
Mineral element distributions in milling fractions of Chinese wheats   总被引:2,自引:0,他引:2  
Malnutrition related to micronutrient deficiency can create immense economic and societal problems. The objective of this study was to quantify the mineral element concentration distribution in milled fractions, using 43 common wheat (Triticum aestivum L.) cultivars sown in Jinan, China during the 2005–2006 crop season. All 43 cultivars had low Fe (average 28.2 mg Kg−1) and Zn (28.6 mg Kg−1) concentrations, and wide ranges of variation for mineral element concentrations. Highly significant effects among milling fractions and cultivars on all traits were observed, with fraction effect being the larger. There was an uneven distribution of mineral element concentrations in wheat grain. Shorts and bran fractions had the highest mineral element concentrations, whereas flours from break and reduction had low concentrations. Compared with those in the central endosperm, the concentration of inorganic phosphorus (Pi) decreased the most with decreasing flour yield, whereas the concentration of phytic acid P (PAP), phytase activity, and Ca decreased the least. Pi was the most concentrated element in the aleurone, whereas PAP, phytase activity, and Ca were the least, compared to those in the central endosperm. Milling technique through adjusting flour yield can be used to improve the element composition of flour.  相似文献   

12.
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers’ incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870–1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum = 31 °C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mm deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m2) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m2). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m2) between treatments; generally the grain yield (g/1.5 m2) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m2) than that on PRBs (mean 815 g/1.5 m2) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m2) in this system of PRBs. The growth and the grain yield (y in g/m2) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1.1x − 308; r2 = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m2). Manual tillage did not affect growth and grain yield of rice (g/m2; g/1.5 m2), either on PRB or on Flat land.  相似文献   

13.
Appropriate benchmarking is essential for evaluating the efficiency with which crops use water and for identifying constraints, other than water, to crop yield. No benchmark exists for sunflower. Boundary and simulation analyses were used to quantify the water productivity of sunflower crops grown in the Western Pampas (semiarid central Argentina). The approach involved the use of a large database (n = 169) collected in farmers’ fields over a period of 4 years, and the application of a crop simulation model in combination with actual weather and soil data. Using field data, an upper bound of 8 kg grain ha−1 mm−1 for water productivity, with an apparent seasonal soil evaporation of 75 mm, was defined. Seasonal water supply exceeded maximum expected seasonal crop requirements (ca. 630 mm) for many crops, and a majority of crops with <630 mm of available water during the season had water productivities considerably lower than the upper bound. The field data-based upper bound was indistinguishable from that obtained using yields for a set of 47 simulations using observed initial values for soil water and nitrogen profiles. Simulation confirmed the main features of the boundary-analysis applied to field data, and many simulated crops had yields that fell below the boundary function, even when simulated yield was plotted against simulated seasonal evapotranspiration or transpiration. Long-term (33-year) simulation analyses for two sites showed that most sunflower crops in the area are subjected to episodes of transient and unavoidable water stress after floral initiation. High levels of available soil water at sowing moderate, but in most years do not eliminate, these exposures to water stress. Yield gaps with respect to the boundary function were associated with deficient or excessive rainfall during grain filling, and other, non-water related, factors such as inadequate crop nutrition, biotic stresses, low photothermal quotients during the interval close to anthesis, and lodging. A grain yield/seasonal evapotranspiration plot for a large (n = 154) data set from experiments conducted by others in five separate environments suggests that the boundary function found for the Western Pampas is broadly applicable. Sunflower water productivity, corrected for oil-synthesis costs and seasonal vapour pressure deficit differences, approximates that of winter cereals grown in Mediterranean environments.  相似文献   

14.
Intensive rice farming in aerobic soil, referred to herein as aerobic rice, can greatly reduce the water input compared to that of flooded rice cultivation. The objective of this study was to compare the potential productivity of aerobic rice and flooded rice using high-yielding varieties at two locations in Japan in two successive years. In aerobic fields, the total amount of water supplied (irrigation plus rainfall) was 800–1300 mm. The soil water potential at 20-cm depth averaged between −15 and −30 kPa each growing season, but frequently reached −60 kPa. The average yield under aerobic conditions was similar to or even higher than that achieved with flooded conditions (7.9 t ha−1 in 2007 and 9.4 t ha−1 in 2008 for aerobic versus 8.2 t ha−1 for flooded). The average water productivity under aerobic conditions was 0.8–1.0 kg grain m−3 water, slightly higher than common values in the literature. The super-high-yielding cultivar Takanari achieved yields greater than 10 t ha−1 with no yield penalty under aerobic conditions in 3 out of 4 experiments. The favorable agronomic characteristic of Takanari was its ample sink capacity (grain number × grain weight). In conclusion, high-productivity rice cultivation in aerobic soil is a promising technology for water conservation. With continued breeding, future aerobic rice varieties will possess large numbers of spikelets and sufficient adaptation to aerobic conditions such that they will consistently achieve yields comparable to the potential yield of flooded rice.  相似文献   

15.
Sainfoin (Onobrychis viciifolia Scop.) is one of the most drought-tolerant perennial legumes that can thrive in dry, alkaline soils. A 3-year study in the Central Anatolian Region of Turkey compared the persistence, productivity and nutritive value of sainfoin planted with nurse crops, namely Hungarian vetch (Vicia pannonica Crantz.) or triticale (× Triticosecale Wittm, ex A. Camus), at three seeding rates. Sainfoin and nurse crop emergence were significantly affected by the companion nurse crop, sowing rate and establishment year. The number of sainfoin plants at emergence was lower during a drier “bad” year (110 plant/m2) than in a “good” precipitation year (236 plant/m2). Triticale had a more negative impact on sainfoin growth than vetch. Planting nurse crops at high seeding rates (90 kg/ha) reduced the number of sainfoin seedlings as compared to the control, while the low seeding rate had little impact on sainfoin emergence. Planting sainfoin with triticale resulted in much greater yield exceeding 10 t/ha, but reduced the forage nutritive value compared to sainfoin monocultures and sainfoin–vetch mixtures. The seeding rate of the nurse crops during a dry year did not affect DM yield in the year of establishment nor in the following year. The findings of this study indicate that planting sainfoin with a nurse crop can substantially increase the DM yield in the year of establishment without yield penalties in the subsequent years, despite fewer established plants, as compared to sainfoin monocultures.  相似文献   

16.
Conventional tilled transplanting, a widely practiced method of rice (Oryza sativa L.) establishment in puddled soils in rice–rice and rice–wheat (Triticum aestivum L.) systems in Asia, requires a large amount of labor and water, which are becoming scarce and expensive. Growing more food with the same production costs or even reduced costs and sustaining the quality of the natural resource base are a major concern. On-farm trials were conducted in Chuadanga District of Bangladesh during the wet season as monsoon rice (aman) and during the dry season as winter rice (boro) in 2006–07 to evaluate the effects of establishment methods with improved crop management on productivity, resource (land, water, and labor) use, and economic return. Rice was established by sowing in line with a drum seeder on conventional tilled puddled soils (CT-DrumR) and by transplanting in line on the day of CT-DrumR (CT-TPR1) and 30 and 35 days after CT-DrumR (CT-TPR2) in aman and boro seasons, respectively. Farmers’ usual transplanting time corresponds to the day of CT-TPR2. Grain yields in CT-DrumR and CT-TPR2 were similar but the crop occupied the main field 22–24 days longer in CT-DrumR than in CT-TPR2, resulting in lower productivity (45 kg grain ha−1 day−1 vs. 55 kg grain ha−1 day−1) in both seasons. Drum-seeded rice matured earlier by 8 and 11 days, received 12% and 6% less irrigation water, saved 19 and 24 person-days ha−1, and gave higher gross margins of 6% and 4% but input costs increased by 20% and 12% than CT-TPR2 in aman and boro seasons, respectively. There is a need to examine these benefits of drum-seeded rice in relation to the feasibility of adoption by farmers.  相似文献   

17.
Long-term field experiments are needed to fully realize positive and negative impacts of conservation tillage and poultry litter application. A study was initiated on a Decatur silt loam soil at the Tennessee Valley Research and Extension Center, Belle Mina, AL, USA in 1996 to evaluate cotton (Gossypium hirsutum L.) performance with long-term poultry litter (PL) application under different tillages and to study the build up of phosphorus (P) with application of PL. Treatments include incomplete factorial combinations of three tillage systems [conventional till (CT), mulch till (MT), and no-till (NT)], two cropping systems [cotton-fallow and cotton-winter rye (Secale cereale L.)], and two nitrogen sources and rates [100 kg N ha−1 from ammonium nitrate (AN), and 100 and 200 kg N ha−1 from poultry litter (PL)]. Cotton was rotated with corn (Zea mays L.) every third year. Results from 2003 to 2008 showed that all tillages gave similar cotton lint yields with AN at 100 kg N ha−1. Application of PL at 100 kg N ha−1 in NT plots resulted in 12 and 11% yield reductions compared to that of CT and MT, respectively. However, NT plots with higher quantity of PL (200 kg N ha−1) gave similar yields to CT and MT at 100 kg N ha−1. During corn years, higher residual fertility of PL, in terms of grain yields, was observed in NT plots compared to CT and MT. Long-term PL application (100 kg N ha−1 year−1) helped to maintain original soil pH in CT and MT while AN application decreased soil pH. In NT plots, PL at 100 kg N ha−1 was not sufficient to maintain original soil pH, but 200 kg N ha−1 maintained original pH. Although not-significant, elevated P levels were observed in all tillages compared to original P levels which indicates possibility of P build up in future with further application of PL. Application of PL at double rate (200 kg N ha−1) in NT plots resulted in significant build up of P. Results indicate that NT gives similar yields to CT when received AN, but needs higher rate of PL application to achieve similar yields to CT.  相似文献   

18.
《Field Crops Research》2005,91(2-3):297-306
Stability of parameters describing crop growth of peanut (Arachis hypogaea L.) is important because of the diversity of climatic conditions in which peanuts are grown and is valuable when developing simulation models for this species. In contrast, variability in the same parameters is desirable for plant breeders working to develop improved cultivars. This study seeks to quantify key parameters for biomass and yield production of some common peanut cultivars at three sites in Texas. We measured leaf area index (LAI), light extinction coefficient (k) for Beer's law, and harvest index (HI) for four cultivars at Stephenville, TX and one cultivar near Gustine, TX, and for LAI and biomass on four cultivars at Seminole, TX. Mean radiation use efficiency (RUE) values were 1.98 g MJ−1 at Stephenville, 1.92 at Gustine, and 2.02 at Seminole. Highest RUE values were for the Low-Energy Precise Application (LEPA) irrigation treatment at Seminole. Maximum LAI values ranged from 5.6 to 7.0 at Stephenville, from 5.0 to 6.2 at Seminole, and was 5.3 at Gustine. Mean k values ranged from 0.60 to 0.64 at Stephenville and was 0.77 at Gustine. The overall mean HI was 0.36, with a mean of 0.33 for Stephenville, 0.44 for Gustine, 0.53 for spray irrigation at Seminole, and 0.58 for LEPA irrigation at Seminole. Values of RUE, k, and HI for the cultivars in this study and similarities between this study and values reported in the literature will aid modelers simulating peanut development and yield and aid breeders in identifying key traits critical to peanut grain yield improvement.  相似文献   

19.
《Field Crops Research》2001,70(2):89-100
Examining physiological relationships that quantify the processes of interception of radiation and biomass accumulation and partitioning provide one avenue for understanding limits to pigeonpea productivity. The radiation extinction coefficient (k), radiation use efficiency (RUE), partitioning of biomass between leaf and stem before flowering, and the rate of linear increase in harvest index (HI) during pod-filling were determined for nine cultivars in water and nutrient non-limiting conditions at ICRISAT Centre, Patancheru, India. The nine cultivars comprised three each from the cultivar duration classes extra-short (100 days to maturity), short (115 days) and medium (170 days). Values of k and RUE were consistent across duration groups, with mean values of 0.53 and ca. 0.9 g MJ−1, respectively. RUE remained at its maximum value almost until maturity. Partitioning between leaf and stem prior to flowering was also consistent across groups, in the ratio of 1:1.03 to 1:1.14. The rate of linear increase in HI and final HI varied across groups, with lower rates of partitioning to grain and final HI in the later maturing groups. When adjusted for fallen leaf, the HI increase was ca. 0.08, 0.075 and 0.04 per day, and maximum HI was ca. 0.35, 0.32 and 0.19 for extra-short, short and medium-duration groups, respectively. The association of lower HI increase with indeterminate growth provides a convenient framework to simulate concurrent reproductive and vegetative growth during pod-filling.  相似文献   

20.
Provision of permanent soil cover using crop residues in conservation agriculture (CA) is constrained by livestock grazing and termite consumption in smallholder farming systems of sub Saharan Africa. This study evaluated the effects of surface applied maize (Zea mays L.) crop residues on termite prevalence, crop damage due to termite attack and maize yield over two seasons, 2008/9 and 2009/10. Treatments with residue application rates of 0, 2, 4 and 6 t ha−1 under CA and a conventional mouldboard ploughing (CMP) control were laid out in a randomized complete block design with four replicates on three farm sites in Kadoma, Zimbabwe. Maize residues increased (P < 0.05) termite numbers compared to CMP treatment. Crop lodging at harvest increased (P < 0.05) from 30 to 34% in CMP to 42–48% in CA systems. However, no significant difference was found in crop lodging with increasing residue rates within CA treatments. Significantly higher crop yields were observed under CA (P < 0.05) ranging from 2900 - 3348 kg ha−1 in 2008/9 season compared to CMP with 2117 kg ha−1. Nevertheless, increasing residue cover in CA did not necessarily increase maize crop yield. Thus, increasing crop residue application rates under CA increased termite prevalence while crop lodging was influenced more by soil tillage system than by crop residue application rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号