首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

2.
Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that causes hepatopancreatic microsporidiosis (HPM) in penaeid shrimp. HPM was observed in several countries, including Thailand and India; it has become a prominent pathogen in shrimp culture. Based on observations on EHP infection in the wild, the route of transmission has been hypothesized. Identification of artificial EHP infection procedures can facilitate our understanding of EHP transmission. Experimental transmission of EHP was attempted using the immersion and oral infections of infection. In the immersion mode, post‐larvae (PL) were exposed to an EHP tissue homogenate (0.2%) by immersion for 48 hr. Experimental samples were collected at various time points, and infection was confirmed using polymerase chain reaction, haematoxylin and eosin staining, transmission electron microscopy and modified trichrome staining. All test results revealed successful EHP transmission. Similar results were obtained through oral infection (oral infection). Innate immune gene expression patterns during infection were analysed; prophenoloxidase, crustin and superoxide dismutase were upregulated at 6, 6 and 48 hr post‐challenge, respectively. Experimental infection procedures facilitate the development of diagnostic and prevention strategies. This is the first study demonstrating the experimental transmission of EHP in shrimp PL.  相似文献   

3.
Stunted growth in pond‐reared Litopenaeus vannamei was observed in different farms located in Tamil Nadu and Andhra Pradesh, India. No mortality was associated with stunted growth. PCR assay on these samples revealed the presence of Enterocytozoon hepatopenaei (EHP) in stunted shrimp. Tissue distribution of EHP in naturally and experimentally infected shrimp was studied by PCR and histology. Histological examination revealed the presence of EHP in hepatopancreas and gut, but not in other organs. The PCR assay revealed the presence of EHP in all the organs tested in both naturally and experimentally infected shrimp. Healthy shrimp were challenged with E. hepatopenaei by intramuscular injection and oral route, and no mortality was observed in both routes after 30 days post‐challenge. Different developmental stages of the microsporidian parasite were observed in the hepatopancreatic epithelial cells. Biochemical parameters such as total protein, albumin, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase were measured in the haemolymph of naturally and experimentally EHP‐infected shrimp. All biochemical parameters mentioned were found to be significantly higher in EHP‐infected shrimp when compared to normal shrimp. This is the first report relating AST and ALT levels to EHP infection in naturally and experimentally infected shrimp.  相似文献   

4.
A 3‐hr experiment was conducted to investigate the effects of dietary myo‐inositol (MI) supplementation on survival, immune response and antioxidant abilities in Litopenaeus vannamei under acute hypoxia stress. Six practical diets were formulated with supplementation of graded levels (control group 0, 0.1, 0.2, 0.4, 0.8 and 1.6 g/kg dry diet) of MI and were randomly assigned to triplicate groups of L. vannamei (mean weight 0.40 ± 0.00 g) for 8 weeks. Ten healthy shrimp (final mean weight approximately 11–14 g) randomly selected from each tank were exposed to hypoxia stress after feeding trial. After 3‐hr acute hypoxia stress, survival of shrimp fed MI‐supplemented diets (except 0.1 and 0.4 g/kg diets) was significantly increased compared with the control group. Shrimp fed control diet had lower activities of alkaline phosphatase (AKP), acid phosphatase (ACP), total antioxidant capacity (T‐AOC) and glutathione peroxidase (GPX), and higher malondialdehyde (MDA) and protein carbonyl (PC) contents in hepatopancreas than those fed the MI‐supplemented diets. In addition, mRNA expression levels of heat shock protein 70 (Hsp70), catalase (CAT) and penaeidin were significantly differentially regulated in hepatopancreas. In summary, dietary MI supplementation may have a positive effect on improving resistance to acute hypoxia stress of L. vannamei.  相似文献   

5.
6.
This trial was conducted to evaluate the effects of nucleotides on growth of whiteleg shrimp, Litopenaeus vannamei, and the survival and metabolic responses to ammonia stress test. Experimental diets were as follows: low fish meal diet (LFMD), and four LFMD test diets, each supplemented with 0.1% guanosine monophosphate (GMP), 0.1% inosine monophosphate (IMP), 0.1% mixture of GMP and IMP and 0.1% mixture of GMP, IMP, uridine monophosphate (UMP) and cytidine monophosphate (CMP). The shrimp specimens (initial body weight: 0.99 ± 0.01 g) were randomly allocated into five groups and fed four times daily for 8‐weeks. After the trial, final body weight was recorded and haemolymph was withdrawn for haematological analysis. The shrimp was then challenged with 70 mg/L ammonia (LC50) for 10 days. Survival and haemolymph of the shrimp were taken after exposure to ammonia. The highest growth performance was observed in the shrimp fed diet supplemented with GMP (p < .05), while survival was not influenced by the test diets in the feeding trial. In the ammonia challenge test, the highest survival was observed in the shrimp fed GMP supplemented diet compared to others. The plasma protein, glucose and cholesterol levels increased in all the treatments while triglycerides level decreased post challenge. Cortisol level recovered at day 10th after the challenge. Shrimps fed with nucleotides diets showed higher protein and glucose level compared to control groups post challenge. In general, nucleotides supplemented in the diet enhanced growth, improved stress resistance while modulating the haemolymph metabolites in L. vannamei under ammonia stress.  相似文献   

7.
This study evaluated the effect of dietary thiamin on growth performance, feed utilization and non‐specific immune response for juvenile Pacific white shrimp, Litopenaeus vannamei. Six isonitrogenous and isolipidic practical diets were formulated with graded thiamin levels of 6.9, 32.7, 54.2, 78.1, 145.1 and 301.5 mg kg?1 of dry diet, respectively. Each diet was randomly assigned to triplicate groups of 30 juvenile shrimp and provided four times each day to apparent satiation. Weight gain (WG) and specific growth rate (SGR) of the shrimp were significantly influenced by the dietary thiamin levels, the maximal WG and SGR occurred at 54.2 mg kg?1 dietary thiamin level. However, with further increase in dietary thiamin level from 54.2 to 301.5 mg kg?1, the WG and SGR significantly decreased. Shrimp fed the 54.2 mg kg?1 thiamin diet exhibited higher feed efficiency, protein efficiency ratio and protein productive value than those fed the other diets. Dry matter and protein content in whole body were significantly affected by the dietary thiamin levels. Thiamin concentration in hepatopancreas significantly increased when the dietary thiamin level increased from 6.9 to 145.1 mg kg?1. The total protein, glucose, triacylglycerol and cholesterol contents in hemolymph were not significantly affected by the dietary thiamin levels. Dietary thiamin had significantly influenced superoxide dismutase, catalase and lysozyme activities in hemolymph. Results of this study indicated that the optimal dietary thiamin requirements estimated using a two‐slope broken‐line model based on WG and thiamin concentration in hepatopancreas were 44.66 and 152.83 mg kg?1, respectively.  相似文献   

8.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

9.
The objective of the study was to examine the effects of biofloc technology on the muscle proteome of Litopenaeus vannamei. Two biofloc treatments and one control were compared: biofloc‐based tanks under zero‐water exchange fed with 150 g/kg crude protein (BF15), or with 250 g/kg crude protein (BF25) diets, and clear water tanks with 50% of daily water exchange stocked with shrimp fed with similar amount of a 250 g/kg crude protein diet, referred to as control. The shrimp (5.28 ± 0.42 g) were divided into the 300‐L fibreglass tanks (water volume of 200 L) at a density of 35 shrimp per tank and were cultured for 35 days. The biofloc groups displayed better growth and survival compared to the control. The muscle tissue from the control and BF25 groups was subjected to proteomic analysis. Lactate dehydrogenase, enolase, arginine kinase, mitochondrial ATP synthase subunit alpha, mitochondrial ATPase inhibitor factor 1 precursor, serpin 3 and myeloid differentiation factor 88 had an increased abundance in the BF25 group, while myosin heavy chain type 1 and myosin heavy chain type 2 showed a decreased abundance. The results indicate that biofloc technology could alter the expression of proteins involved in structure, metabolism and immune status of cultured shrimp.  相似文献   

10.
White spot syndrome virus (WSSV) has caused significant losses in shrimp farms worldwide. Between 2004 and 2006, Pacific white shrimp Litopenaeus vannamei (Boone) were collected from 220 farms in Taiwan to determine the prevalence and impact of WSSV infection on the shrimp farm industry. Polymerase chain reaction (PCR) analysis detected WSSV in shrimp from 26% of farms. Juvenile shrimp farms had the highest infection levels (38%; 19/50 farms) and brooder shrimp farms had the lowest (5%; one of 20 farms). The average extent of infection at each farm was as follows for WSSV‐positive farms: post‐larvae farms, 71%; juvenile farms, 61%; subadult farms, 62%; adult farms, 49%; and brooder farms, 40%. Characteristic white spots, hypertrophied nuclei and basophilic viral inclusion bodies were found in the epithelia of gills and tail fans, appendages, cephalothorax and hepatopancreas, and virions of WSSV were observed. Of shrimp that had WSSV lesions, 100% had lesions on the cephalothorax, 96% in gills and tail fans, 91% on appendages and 17% in the hepatopancreas. WSSV was also detected in copepoda and crustaceans from the shrimp farms. Sequence comparison using the pms146 gene fragment of WSSV showed that isolates from the farms had 99.7–100% nucleotide sequence identity with four strains in the GenBank database – China ( AF332093 ), Taiwan ( AF440570 and U50923 ) and Thailand ( AF369029 ). This is the first broad study of WSSV infection in L. vannamei in Taiwan.  相似文献   

11.
Phagocytosis is an important function of both invertebrate and vertebrate blood cells. In this study, the phagocytic activity of haemocyte subpopulations of penaeid shrimp, Litopenaeus vannamei, (Boone), against pathogenic and non‐pathogenic particles was investigated in vitro. The haemocytes of penaeid shrimp were firstly separated by centrifugation on a continuous density gradient of iodixanol into four fractions with five subpopulations (sub), of which sub 1 (hyalinocytes) and sub 4 (semi‐granulocytes) have the main function in phagocytosis of both pathogenic and non‐pathogenic bacteria as well as fluorescent polystyrene beads. It was found that these haemocyte subpopulations engulfed virulent Vibrio campbellii and Vibrio harveyi at a higher rate than non‐virulent Escherichia coli and polystyrene beads. When these bacteria were mixed with shrimp haemocyte subpopulations and incubated for 180 min, the percentage of viable intracellular V. campbellii (25.5 ± 6.0%) recovered was significantly higher than the percentage recovered from V. harveyi (13.5 ± 1.1%). No viable intracellular E. coli was observed in this study. In contrast to V. harveyi and E. coli, V. campbellii containing endosomes did not acidify in time. Incubation of haemocyte subpopulations with the most virulent V. campbellii strain resulted in a significant drop in haemocyte viability (41.4 ± 6.3% in sub 1 and 30.2 ± 15.1% in sub 4) after 180 min post‐inoculation in comparison with the less virulent V. harveyi (84.1 ± 5.6% in sub 1 and 83.4 ± 4.1% in sub 4) and non‐virulent E. coli (92.7 ± 2.8% in sub 1 and 92.3 ± 5.6% in sub 4) and polystyrene beads (91.9 ± 1.6% in sub 1 and 84.4 ± 3.4% in sub 4). These findings may be a valuable tool for monitoring shrimp health and immunological studies.  相似文献   

12.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

13.
An 8‐week study was conducted to explore the results of Macsumsuk® as a feed additive on the stress tolerance and growth of Litopenaeus vannamei in 15 culture tanks of 36 L each. Three hundred shrimp averaging 0.1 ± 0.01 g were fed with five isonitrogenous (48.38 ± 0.38% CP) diets (in triplicate groups) containing kaolinite (Macsumsuk®) at 0%, 0.3%, 0.6%, 1.2% and 2.4%, namely Mk0, Mk0.3, Mk0.6, Mk1.2 and Mk2.4. Specific growth rate (SGR) and weight gain (WG) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diet Mk0 (p < .05). However, SGR and WG of shrimp fed diets Mk0.6, Mk1.2 and Mk2.4 were not significantly different. Protein efficiency ratio (PER) and feed efficiency (FE) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diets Mk0, Mk0.3 and Mk0.6. Furthermore, the survival of shrimp fed diet Mk2.4 was significantly lower than that of shrimp fed diet Mk0.6 (p < .05). Cumulative mortality of shrimp fed diet Mk1.2 was significantly lower than that of shrimp fed diet Mk0 at 1–1.5 hr post‐stress to low dissolved oxygen (from 6.1 mg/L to 2.9 mg/L) and 4–5 hr post‐stress to low salinity (from 32‰ to 1‰) (p < .05). The optimum dietary Macsumsuk® level for juvenile L. vannamei was determined as 1.97% by the polynomial regression analysis of weight gain.  相似文献   

14.
Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata were measured using integrated culturing method under zero‐water exchange system in a 45‐day period. A 2 × 3 factorial design was used with two levels of shrimp stocking densities and three levels of seaweed weight densities. G. corticata was cultured on a net tied to a round polyethylene frame. Culture tanks were filled with 750‐L filtered seawater. A 40‐W compact fluorescent lamp was hung over each tank to provide adequate and sufficient light for seaweed growth. Growth parameters of shrimp and seaweed such as specific growth rate (SGR), weight gained (WG) and average daily growth (ADG) were computed based on the initial and final weight of shrimp and seaweed. The maximum and minimum SGR of L. vannamei (1.97 and 1.69%/day) were observed in treatment S1A3 (25 shrimp/m2 and 400 g seaweed/m2) and S2A1 (50 shrimp/m2 without seaweed) respectively. The best survival rate (94.67 ± 1.33%), WG (129.9 ± 2.9%) and feed conversion ratio (1.67 ± 0.04) were also observed in treatment S1A3. The SGR of G.corticata in the treatment S1A3 (1.97 ± 0.00%/day) was significantly higher, compared to others. Strong positive correlations were obtained between the density of G. corticata and the growth parameters of L. vannamei. The red seaweed G. corticata could boost the growth parameters, survival rate and total production of L. vannamei under zero‐water exchange system.  相似文献   

15.
16.
Blood clotting exhibits various important functions, including the prevention of body fluid loss and invasion of pathogens in shrimp. The effects of pathogenic Vibrio harveyi on plasma of white shrimp (Litopenaeus vannamei) in vitro and in vivo were investigated in this study. The clotting protein (coagulogen) in plasma of white shrimp pre‐incubated with extracellular products (ECP) of V. harveyi was found apparently decreased and fast‐migrated in crossed immunoelectrophoresis (CIE) gels. In addition, the coagulogen had been degraded to many low molecular‐weight protein bands in plasma pre‐incubated with ECP on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) gels. When pre‐challenged with bacterial cells and ECP of V. harveyi, the white shrimp began to die at about 30 and 16 h respectively. Moreover, plasma coagulogen was decreased more obvious in shrimp challenged with ECP than that with bacterial cells as visualized in CIE gels, and total plasma protein in both group of shrimp were all decreased. Haemolymph withdrawn from moribund shrimp pre‐challenged with V. harveyi or its ECP was observed unclottable. However, the addition of clotting factors (transglutaminase and/or Ca2+) to these unclottable plasma could apparently promote their re‐clotting ability as jelly‐like solid observed in microtubes. The recovery of clotting ability of plasma from moribund shrimp was due to the reformation of coagulogen (200 kDa) after adding the two clotting factors as shown on CIE and SDS‐PAGE gels. The present results suggest that the infection of V. harveyi in white shrimp may not only degrade coagulogen but also influence the presence of transglutaminase and Ca2+ ion.  相似文献   

17.
Effects of artificial substrates in zero‐water‐exchange culture system on the rearing performance of Litopenaeus vannamei under winter indoor condition were investigated in this study. Growth, survival, feed conversion rate (FCR), production rate of L. vannamei and water quality were compared between artificial substrate‐treated group (AST) and control group (without artificial substrates presented in the rearing environment). Artificial substrates can significantly improve the water quality, the ammonia and nitrite‐N concentrations in the AST group were significantly lower than in the control group (P < 0.05), and the total heterotrophic bacteria and Vibrio spp. were also significantly lower in the AST group (P < 0.05). The survival, growth and production rate of L. vannamei in the AST group were significantly higher than in the control group (P < 0.05). Significantly lower FCR was observed in the AST group (P < 0.05). Results from this study indicate that the utilization of artificial substrates in the indoor shrimp culture system could effectively control the water quality, improve the survival and growth of shrimp and significantly reduce the FCR. This study provides a guideline for employing artificial substrates in rearing of shrimp in the zero‐water‐exchange culture system under lower temperature, which could be applicable to other similar species.  相似文献   

18.
A feeding trial was conducted to assess the effects of dietary Schizochytrium meal supplementation on survival, growth performance, activities of digestive enzymes and fatty acid composition in Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Four isonitrogenous and isolipidic diets were formulated to contain graded levels of Schizochytrium meal: 0% (S0, the control diet), 2% (S2), 4% (S4) and 6% dry matter (S6). Results showed that there was no significant difference in survival of shrimps among dietary treatments (> 0.05). Shrimps fed diets with 2% and 4% microalgae meal had significantly higher specific growth rate (SGR) than that of shrimps fed diets with 0% and 6% microalgae meal, and no significant differences were observed between shrimps fed diets with 2% and 4% microalgae meal (> 0.05). Activity of trypsin in the pancreatic and intestinal segments, and activity of amylase in the pancreatic segments were not significantly affected by dietary microalgae meal levels (> 0.05). Specific activities of both alkaline phosphatase and leucine‐aminopeptidase in intestine and purified brush border membrane of intestine were significantly higher in shrimps fed diet with 2% microalgae meal (< 0.05). There were no significant differences in C18:2n‐6, n‐3 fatty acids, n‐6fatty acids, PUFA and n‐3/n‐6 in muscle samples among dietary treatments. C16:1n‐7, C18:1n‐9, MUFA, C18:3n‐3 and C20:5n‐3 decreased, however, C20:4n‐6 increased in the muscle as dietary microalgae meal level increased. In conclusion, 4% Schizochytrium meal in microdiets of shrimps can improve growth performance and may be a valuable additive in the microdiets of shrimps.  相似文献   

19.
Some shrimp hatcheries use artificial insemination (AI) to improve the male to female ratio in their breeding populations. We describe a sperm extender solution, which allows the short‐term storage of diluted sperm in Litopenaeus vannamei, and its use in an artificial insemination process. We also evaluate its fertilization capacity. An AI experiment was designed using two, one, or half spermatophore segments. We tested four treatments involving three different male:female ratios: Natural mating (1:1), Regular and Regular diluted (1:2) and Half diluted (1:4). Data analysis revealed that the number of nauplii produced per mating was affected by treatment, with Regular (158 420) performing better than Half diluted (112 864) (P < 0.05), but with no differences between the latter and Regular diluted (130 340) (P > 0.05). A binomial variable named female success (FS) was defined as successful when the number of nauplii obtained per mate was ≥25 000. Analysis showed differences for FS across treatments (P < 0.001), but not between Regular (79.2%), the hatchery conventional AI technique and Half diluted (60.4%), maybe due to sample size. Since the number of nauplii per mate is crucial to consider AI successful, it is necessary to improve this AI technique before it can be used in the shrimp industry.  相似文献   

20.
Pacific white shrimp Litopenaeus vannamei (1050 individuals with initial weight of 1.01 ± 0.001 g) were fed either control diet or one of six dietary astaxanthin (AX) concentration (25, 50, 75, 100, 125 and 150 mg kg−1) diets for 56 days in 35 tanks (30 shrimp per tank). After 56 days of culture, shrimp‐fed AX125 and AX150 diets had higher (< 0.05) weight gain, specific growth rate, total antioxidant status and lower (< 0.05) superoxide dismutase (SOD), catalase (CAT) than shrimp fed control diet. After low dissolved oxygen stress for 1 h, survival rate of shrimp fed AX75, AX100, AX125 and AX150 diets was higher (< 0.05) than that of shrimp fed control diet. Hypoxia inducible factor‐1α (HIF‐1α), cytosolic manganese superoxide dismutase (cMnSOD) and CAT mRNA expression levels of shrimp fed seven diets were significantly down‐regulated under hypoxia than under normoxia, but their expression levels were higher under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet. About 70‐kDa heat‐shock protein (Hsp70) mRNA expression level of shrimp fed seven diets was significantly up‐regulated under hypoxia than under normoxia, but its expression level was lower under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号