共查询到20条相似文献,搜索用时 46 毫秒
1.
Non‐target site SDHI resistance is present as standing genetic variation in field populations of Zymoseptoria tritici 下载免费PDF全文
BACKGROUND
A new generation of more active succinate dehydrogenase (Sdh) inhibitors (SDHIs) is currently widely used to control Septoria leaf blotch in northwest Europe. Detailed studies were conducted on Zymoseptoria tritici field isolates with reduced sensitivity to fluopyram and isofetamid; SDHIs which have only just or not been introduced for cereal disease control, respectively.RESULTS
Strong cross‐resistance between fluopyram and isofetamid, but not with other SDHIs, was confirmed through sensitivity tests using laboratory mutants and field isolates with and without Sdh mutations. The sensitivity profiles of most field isolates resistant to fluopyram and isofetamid were very similar to a lab mutant carrying SdhC‐A84V, but no alterations were found in SdhB, C and D. Inhibition of mitochondrial Sdh enzyme activity and control efficacy in planta for those isolates was severely impaired by fluopyram and isofetamid, but not by bixafen. Isolates with similar phenotypes were not only detected in northwest Europe but also in New Zealand before the widely use of SDHIs.CONCLUSION
This is the first report of SDHI‐specific non‐target site resistance in Z. tritici. Monitoring studies show that this resistance mechanism is present and can be selected from standing genetic variation in field populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. 相似文献2.
Roohparvar R Mehrabi R Van Nistelrooy JG Zwiers LH De Waard MA 《Pest management science》2008,64(7):685-693
BACKGROUND: The major facilitator superfamily (MFS) drug transporter MgMfs1 of the wheat pathogen Mycosphaerella graminicola (Fuckel) J Schroeter is a potent multidrug transporter with high capacity to transport strobilurin fungicides in vitro. The data presented in this paper indicate that, in addition to the predominant cause of strobilurin resistance, cytochrome b G143A subsititution, MgMfs1 can play a role in sensitivity of field strains of this pathogen to trifloxystrobin. RESULTS: In a major part of field strains of M. graminicola (collected in the Netherlands in 2004) containing the cytochrome b G143A substitution, the basal level of expression of MgMfs1 was elevated as compared with sensitive strains lacking the G143A substitution. Induction of MgMfs1 expression in wild-type isolates upon treatment with trifloxystrobin at sublethal concentrations proceeded rapidly. Furthermore, in disease control experiments on wheat seedlings, disruption mutants of MgMfs1 displayed an increased sensitivity to trifloxystrobin. CONCLUSION: It is concluded that the drug transporter MgMfs1 is a determinant of strobilurin sensitivity of field strains of M. graminicola. 相似文献
3.
Sources of resistance to septoria tritici blotch and implications for wheat breeding 总被引:2,自引:0,他引:2
Twenty-four wheat cultivars and breeding lines were screened for isolate-specific resistance to septoria tritici blotch (STB) caused by 12 isolates of Mycosphaerella graminicola. New isolate-specific resistances that could be used in wheat breeding were identified. Major sources of resistance to STB used in world breeding programmes for decades, such as Kavkaz-K4500, Veranopolis, Catbird and TE9111, have several isolate-specific resistances. This suggests that 'pyramiding' several resistance genes in one cultivar may be an effective and durable strategy for breeding for resistance to STB in wheat. Several cultivars, including Arina, Milan and Senat, had high levels of partial resistance to most isolates tested as well as isolate-specific resistances. Resistance to isolate IPO323 was common, present in all but one of the major sources of resistance tested. This suggests that resistance to IPO323 may be an indicator of varietal resistance to STB in the field. 相似文献
4.
5.
Dose and number of applications that maximize fungicide effective life exemplified by Zymoseptoria tritici on wheat – a model analysis 下载免费PDF全文
Two key decisions that need to be taken about a fungicide treatment programme are (i) the number of applications that should be used per crop growing season, and (ii) the dosage that should be used in each application. There are two opposing considerations, with control efficacy improved by a higher number of applications and higher dose, and resistance management improved by a lower number of applications and lower dose. Resistance management aims to prolong the effective life of the fungicide, defined as the time between its introduction onto the market for use on the target pathogen, and the moment when effective control is lost due to a build‐up of fungicide resistance. Thus, the question is whether there are optimal combinations of dose rate and number of applications that both provide effective control and lead to a longer effective life. In this paper, it is shown how a range of spray programmes can be compared and optimal programmes selected. This is explored with Zymoseptoria tritici on wheat and a quinone outside inhibitor (QoI) fungicide. For this pathogen–fungicide combination, a single treatment provided effective control under the simulated disease pressure, but only if the application timing was optimal and the dose was close to the maximum permitted. Programmes with three applications were generally not optimal as they exerted too much selection for resistance. Two‐application fungicide programmes balanced effective control with reasonable flexibility of dose and application timing, and low resistance selection, leading to long effective lives of the fungicide. 相似文献
6.
There has been a recent rapid decline in the efficacy of some, but not all, azole fungicides in controlling the Septoria leaf blotch pathogen of wheat, Mycosphaerella graminicola. Hans J. Cools and Bart A. Fraaije ask the question: can widespread resistance to all azoles develop in this pathogen? Copyright © 2008 Society of Chemical Industry 相似文献
7.
A method is presented to quantify the net effect of disease management on greenhouse gas (GHG) emissions per hectare of crop and per tonne of crop produce (grain, animal feed, flour or bioethanol). Calculations were based on experimental and survey data representative of UK wheat production during the period 2004–06. Elite wheat cultivars, with contrasting yields and levels of disease resistance, were compared. Across cultivars, fungicides increased yields by an average of 1·78 t ha?1 and GHG emissions were reduced from 386 to 327 kg CO2 eq. t?1 grain. The amount by which fungicides increased yield – and hence reduced emissions per tonne – was negatively correlated with cultivar resistance to septoria leaf blotch (Mycosphaerella graminicola, anamorph Septoria tritici). GHG emissions of treated cultivars were always less than those of untreated cultivars. Without fungicide use, an additional 0·93 Mt CO2 eq. would be emitted to maintain annual UK grain production at 15 Mt, if the additional land required for wheat production displaced other UK arable crops/set aside. The GHG cost would be much greater if grassland or natural vegetation were displaced. These additional emissions would be reduced substantially if cultivars had more effective septoria leaf blotch resistance. The GHGs associated with UK fungicide use were calculated to be 0·06 Mt CO2 eq. per annum. It was estimated that if it were possible to eliminate diseases completely by increasing disease resistance without any yield penalty and/or developing better fungicides, emissions could theoretically be reduced further to 313 kg CO2 eq. t?1 grain. 相似文献
8.
A detached seedling leaf technique was developed to screen for resistance to septoria tritici blotch of wheat and to detect specific interactions between cultivars and isolates. Wheat seedlings were inoculated with spore suspensions of Mycosphaerella graminicola . Detached primary leaves were then placed in a clear plastic box such that their cut ends were sandwiched between layers of agar containing benzimidazole, with a gap below the middle of the leaves. Mean levels of disease were affected by light and temperature, and also by the concentration of benzimidazole, such that higher concentrations resulted in less disease. Second leaves were more susceptible than seedling primary leaves. However, none of these factors affected ranking of disease among cultivars or cultivar-by-isolate interactions. Kavkaz–K4500 1.6.a.4, Synthetic 6x and Triticum macha showed specific susceptibility and resistance to different isolates. The detached leaf technique could be a useful complement to field trials and an alternative to whole seedling assays in assessing cultivar resistance and investigating the genetics of the host–pathogen interaction. 相似文献
9.
10.
L. S. Arraiano † N. Balaam ‡ P. M. Fenwick C. Chapman D. Feuerhelm † P. Howell § S. J. Smith ¶ J. P. Widdowson J. K. M. Brown 《Plant pathology》2009,58(5):910-922
The contributions of disease escape and disease resistance to the responses of wheat to septoria tritici leaf blotch (STB) were analysed in a set of 226 lines, including modern cultivars, breeding lines and their progenitors dating back to the origin of scientific wheat breeding. Field trials were located in the important wheat-growing region of eastern England and were subject to natural infection by Mycosphaerella graminicola . STB scores were related to disease-escape traits, notably height, leaf spacing, leaf morphology and heading date, and to the presence of known Stb resistance genes and isolate-specific resistances. The Stb6 resistance gene was associated with a reduction of 19% in the level of STB in the complete set of 226 lines and with a 33% reduction in a subset of 139 lines of semidwarf stature. Greater plant height was strongly associated with reduced STB in the full set of lines, but only weakly in the semidwarf lines. Shorter leaf length was also associated with reduced STB, but, in contrast to earlier reports, lines with more prostrate leaves had more STB on average, probably because they tended to have longer leaves. Several lines, notably cvs Pastiche and Exsept, had low mean levels of STB which could not be explained by either escape traits or specific resistance genes, implying that they have unknown genes for partial resistance to STB. 相似文献
11.
Carolina Orellana-Torrejon Tiphaine Vidal Sébastien Saint-Jean Frédéric Suffert 《Plant pathology》2022,71(7):1537-1549
This study follows on from a previous study showing that binary mixtures of wheat cultivars affect the evolution of Zymoseptoria tritici populations within a field epidemic from the beginning (t1) to the end (t2) of a growing season. Here, we focused on the impact of interseason sexual reproduction on this evolution. We studied mixtures of susceptible and resistant cultivars (carrying Stb16q, a recently broken-down resistance gene) in proportions of 0.25, 0.5 and 0.75, and their pure stands. We determined the virulence status of 1440 ascospore-derived strains collected from each cultivar residue by phenotyping on seedlings. Virulence frequencies in the ascospore-derived population were lower in mixtures than in pure stands of the resistant cultivar, especially in the susceptible cultivar residues, as at t2, revealing that the impact of mixtures persisted until the next epidemic season (t3). Surprisingly, after sexual reproduction the avirulence frequencies on the resistant cultivar residues increased in mixtures where the proportion of the susceptible cultivar was higher. Our findings highlight two epidemiological processes: selection within the pathogen population between t1 and t2 driven by asexual cross-contamination between cultivars (previous study) and sexual crosses between avirulent and virulent strains between t2 and t3 driven by changes in the probabilities of physical encounters (this study). Mixtures therefore appear to be a promising strategy for the deployment of qualitative resistances, not only to limit the intensity of Septoria tritici blotch epidemics, but also to reduce the erosion of resistances by managing evolution of the pathogen population at a pluriannual scale. 相似文献
12.
Effect of azole fungicide mixtures,alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici 下载免费PDF全文
The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (P = 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action. 相似文献
13.
Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici 下载免费PDF全文
L. K. Estep S. F. F. Torriani M. Zala N. P. Anderson M. D. Flowers B. A. McDonald C. C. Mundt P. C. Brunner 《Plant pathology》2015,64(4):961-971
Although fungicide resistance in crop pathogens is a global threat to food production, surprisingly little is known about the evolutionary processes associated with the emergence and spread of fungicide resistance. Early stages in the evolution of fungicide resistance were evaluated using the wheat pathogen Zymoseptoria tritici, taking advantage of an isolate collection spanning 20 years in Oregon, USA, and including two sites with differing intensity of fungicide use. Sequences of the mitochondrial cytb protein conferring single‐mutation resistance to QoI fungicides and the nuclear CYP51 gene implicated in multiple‐mutation resistance to azole fungicides were analysed. Mutations associated with resistance to both fungicides were absent in the 1992 isolates, but frequent in the 2012 collection, with higher frequencies of resistance alleles found at the field site with more intensive fungicide use. Results suggest that the QoI resistance evolved independently in several lineages, and resulted in significant mitochondrial genome bottlenecks. In contrast, the CYP51 gene showed signatures of diversifying selection and intragenic recombination among three phylogenetic clades. The findings support a recent emergence of resistance to the two fungicide classes in Oregon, facilitated by selection for mutations in the associated resistance genes. 相似文献
14.
This study reports the discovery of a gene for resistance to septoria tritici blotch (STB) in two spring wheat cultivars, Courtot and Tonic. The gene, named Stb9 , confers resistance to Mycosphaerella graminicola isolate IPO89011. It was mapped by quantitative trait loci (QTL) analysis using an existing map of Courtot × Chinese Spring and was located between markers Xfbb226 (3·6 cM) and XksuF1b (9 cM) on the long arm of chromosome 2B. Markers linked to Stb9 in Courtot were then shown to be linked to resistance to IPO89011 in F3 families of Tonic × Longbow. Allelism tests in which Tonic was crossed with Courtot confirmed that Tonic has a gene for resistance to IPO89011 at or very close to the Stb9 locus. SSR markers flanking Stb9 may be used in marker-assisted selection to introgress this gene into winter cultivars or in spring wheat breeding programmes outside Europe. 相似文献
15.
Fifty-two wheat cultivars and breeding lines, most of which have been used in breeding programmes worldwide, were tested for isolate-specific resistance to Mycosphaerella graminicola isolate IPO323, which interacts with the Stb6 gene of wheat (first identified in cvs Flame and Hereward) via a gene-for-gene relationship. Twenty-three lines were specifically resistant to this isolate. Sixteen resistant lines were crossed with Flame for a test of allelism. All progeny lines were resistant, suggesting that the 16 parental lines had Stb6 , a gene allelic to it or a gene closely linked to it. In 14 lines, resistance to IPO323 was controlled by Stb6 only. An exception was Kavkaz-K4500 L6.A.4., which has two genes for resistance to IPO323, one of which is Stb6 . The microsatellite marker Xgwm369 was used to examine genetic diversity in the region of the genome containing Stb6 , to which it is closely linked. Eleven alleles of Xgwm369 , with amplified fragments of 10 different sizes, as well as apparent nonamplification of this marker in Bulgaria 88, were detected. Through the use of information about lines' ancestry, combined with Xgwm369 alleles, it was shown that Stb6 entered world wheat-breeding programmes on a minimum of six occasions, and possibly from as many as 11 sources. The presence of Stb6 in both European and Chinese landraces suggests that this gene has been present in cultivated wheat since the earliest times of agriculture. 相似文献
16.
Pierre Hellin Maxime Duvivier Aurélie Clinckemaillie Charlotte Bataille Anne Legrève Thies M. Heick Lise N. Jørgensen Björn Andersson Berit Samils Bernd Rodemann Gunilla Berg Steven Kildea 《Plant pathology》2020,69(9):1666-1677
Demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides are currently relied upon for the control of septoria tritici blotch (STB) in European wheat fields. However, multiple mutations have occurred over time in the genes encoding the targeted proteins that have led to a practical loss of fungicide efficacies. Among the different amino acid substitutions in Zymoseptoria tritici associated with resistance to these fungicides, S524T in CYP51 (DMI target) and H152R in SdhC (SDHI target) are regarded as conferring the highest resistance factors to DMI and SDHI, respectively. To facilitate further studies on the monitoring and selection of these substitutions in Z. tritici populations, a multiplex allele-specific quantitative PCR (qPCR) assay allowing for estimation of both allele frequencies in bulk DNA matrices was developed. The assay was then used on complex DNA samples originating from a spore trap network set up in Belgium, Denmark, Sweden, and Ireland in 2017 and 2018, as well as on leaf samples with symptoms. The S524T allele was present in all field samples and its proportion was significantly higher in Ireland than in Belgium, whereas the proportion of H152R was only sporadically present in both countries. The frequency of S524T varied greatly in the airborne inoculum of all four countries; however, the H152R allele was never detected in the airborne inoculum. The method developed in this study can be readily adopted by other laboratories and used for multiple applications including resistance monitoring in field populations of Z. tritici. 相似文献
17.
Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines 总被引:2,自引:0,他引:2
From a total of 238 European cultivars and breeding lines screened for isolate-specific resistance to septoria tritici blotch (STB) with eight Mycosphaerella graminicola isolates from five different countries, 142 lines were resistant to Ethiopian isolate IPO88004, and 43 lines were specifically resistant to IPO323, with little or no leaf area bearing pycnidia of M. graminicola . These lines probably all have the resistance gene Stb6 . Specific resistances to isolates CA30JI, IPO001, IPO89011, IPO92006 and ISR398 were less common. Seventy-three per cent of the lines were specifically resistant to at least one isolate and 36 lines were resistant to more than one isolate. The line with the greatest number of specific resistances was the spring cultivar Raffles, with five. The most resistant line in which no specific resistance was identified was the Italian landrace Rieti, an ancestor of many modern European wheat cultivars. There was also a wide range of partial resistance among the lines tested, expressed in detached seedling leaves. Information about the resistance of wheat lines to M. graminicola isolates will assist breeders to choose parents of crosses from which progeny with superior resistance to STB may be selected. 相似文献
18.
This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry 相似文献
19.
Jean Sanssené Sameh Selim Céline Roisin‐Fichter Lynda Djerroud Caroline Deweer Patrice Halama 《Pest management science》2011,67(9):1134-1140
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry 相似文献