首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth data of two different commercial turbot (Scophthalmus maximus) strains reared in recirculating aquaculture systems were analysed with the aim to determine the most suitable model for turbot. To assess the model performance three different criteria were used: (1) The mean percentage deviation between the estimated length and actual length; (2) the residual standard error with corresponding degrees of freedom and (3) the Akaike information criterion. The analyses were carried out for each strain separately, for sexes within strains and for a pooled data set containing both strains and sexes. We tested a pre‐selection of six models, containing three to four parameters. Models were of monomolecular shape or sigmoid shape with a flexible point of inflection including the special case of monomolecular shape in defined cases of their parameters. The 4‐parametric Schnute model achieved best fit in 62% of all cases and criteria tested, followed by the also 4‐parametric generalized Michaelis–Menten equation in 48% and the 4‐parametric Janoschek model (38%). The von Bertalanffy growth function achieved only 29%, Brody 24% and a new flexible function 19% best fit. In a 1–1000 day growth‐simulation sigmoid shaped curves were produced by the Schnute model in 71% of cases. The Janoschek and the Michaelis–Menten model each produced sigmoid curves in 57% of all cases. This indicates that a flexible 4‐parametric function reflects the growth curve of turbot the best and that this curve is rather sigmoid than monomolecular shaped.  相似文献   

2.
The growth data of a commercial aquaculture recirculation system were analysed to investigate the growth performance of reared turbot (Psetta maxima). Three common growth models (von Bertalanffy, Gompertz and Schnute) were fitted to the growth data documented over a time period of 6 years. To determine the most suitable model, three different criteria were used: (1) the Akaike index criterion, (2) the sum of squared residuals and (3) the average daily deviation between the estimated final weight and the observed final weight. The evaluation of the growth models showed that the Schnute model had the lowest Akaike index, the lowest sum of squared residuals and the lowest daily deviation between estimated and real weight of all tested growth models. The Schnute model produced sigmoid growth curves. The estimated growth coefficients were the most realistic ones in regard to biological interpretation. In contrast, the von Bertalanffy growth model and the Gompertz model estimated inaccurate exponential growth curves and are therefore unable to simulate the growth data as well as the Schnute model. The results indicate that the von Bertalanffy growth model is not the optimal model to simulate the present growth data and that the growth potential of reared turbot has probably not yet been fully exploited in the aquaculture system(s) examined (so far).  相似文献   

3.
Three color morphs (white, green and purple strains) of Apostichopus japonicus (Selenka) were cultured in artificial seawater, for approximately 90 days, in three temperature ranges: 27–22°C (high), 22–17°C (mid) and 17–12°C (low). All strains grew in all temperature ranges. Temperature significantly affected growth rate, digestibility, digestive enzymes and immune‐related enzymes. Highest specific growth rates were exhibited in 4‐month‐old sea cucumbers at mid and high temperatures, and in 16‐month‐old sea cucumbers at mid and low temperatures. Specific growth rates of green and purple strains were not significantly different, but were significantly higher than that of the white strain at mid temperatures. The digestibility of each strain was significantly higher at 27°C, 22°C and 17°C than at 12°C. Green‐strain digestibility was higher than that of purple and white strains at specific temperatures. Protease and amylase activities of all strains followed bell‐shaped temperature curves with maximum digestive enzyme activity at 17°C. The activities of alkaline and acid phosphatases were higher in the guts of the green strain than in the white or purple strains at the same temperature. Superoxide dismutase activity was higher in the purple strain than in white and green strains.  相似文献   

4.
Multimodel frameworks are common in contemporary elasmobranch growth literature. These techniques offer a proposed improvement over individual growth functions by incorporating additional candidate models with alternative characteristics. Sigmoid functions (e.g. Gompertz and logistic) are a popular alternative to the commonly used von Bertalanffy growth function (VBGF) as they are hypothesized to better suit certain taxa based on body shape (such as batoids) or reproductive mode (such as egg‐layers). However, this hypothesis has never been tested. This study examined 74 elasmobranch multimodel growth studies by comparing the growth curves of their respective candidate models. Hypotheses regarding model performances were rejected as the VBGF was equally likely to fit best for all taxa and reproductive modes. Subsequently, no individual model was suited to be used a priori. Differences between candidate model fits were greatest at age zero with Gompertz and logistic functions providing estimates that were 15% and 23% larger on average than the VBGF, respectively. However, length‐at‐age estimates of the different models became negligible at older ages. Differences between candidate models were mostly small (≤5%), and the multimodel framework only marginally affected length‐at‐age estimates. However, there were cases where some candidate models provided inappropriate fits that contrasted considerably to the best fitting model. In some of these instances, a single‐model framework could have yielded biologically unrealistic growth estimates. Therefore, no study could pre‐empt whether or not it required a multimodel framework. A framework was subsequently recommended to maximize the accuracy of model fits for elasmobranch length‐at‐age estimates using multimodel approaches.  相似文献   

5.
Four experimental diets were fed to turbot to examine the effect of fish hydrolysate and ultra‐filtered fish hydrolysate on growth performance, feed utilization and non‐specific immune response. Fish hydrolysate was produced by enzymatic treatment and size fractionated using ultra‐filtration (UF). The permeate (molecular weight <1000 Da) after UF and the non‐ultra‐filtered fish hydrolysate (NUF) were tested as feed ingredients. Diets UF1, UF2 contained 3.7%, 1.2% ultra‐filtered fish hydrolysate to replace fish meal protein respectively. The diets UF1, NUF were identical in composition except that the molecular weight of fish hydrolysate in the diet. Fish meal was used in the control diet. All diets were made equal in protein, lipid and energy. Each experimental diet was fed to juvenile turbot (27.87 ± 0.04 g) in triplicate for 8 weeks. Results of this study indicate that the best overall growth and feed utilization of turbot juveniles were obtained with a diet containing higher dose of the small molecular weight compounds in fish hydrolysate. Acid phosphatase, alkaline phosphatase, lysozyme and superoxide dismutase activity in serum were not affected by diet. Total antioxidant capacity was improved with increasing level of low molecule weight fish hydrolysate (UF1).  相似文献   

6.
We examined growth in length of fluvial bull trout (Salvelinus confluentus) in the Walla Walla River Basin, Washington and Oregon. Our objectives were to quantify individual variability in growth; examine growth within and among years, life history forms, life stages and sexes; and estimate von Bertalanffy growth parameters. Individual variability was evaluated by modelling asymptotic length (L) and the growth coefficient (k) as random variables. All models were fit with Bayesian methods and were evaluated for fit by the deviance information criterion. By incorporating individual variability, population‐level estimates of L and k appeared appropriate and estimated growth trajectories for specific bull trout fit individual observed patterns in growth. Growth trajectories and positive correlation between individual estimates of L and k suggest that some individuals grow at a faster rate and reach a larger maximum size than other individuals and those differences are maintained throughout life. Selected models suggest that fluvial migrants have higher estimates of L and k than residents, but there were only slight differences in parameter estimates among migrants from two adjacent spawning populations in the Walla Walla River Basin, as well as between males and females. Growth rates increased for fluvial migrants after subadult emigration. Individual variability in growth is consistent with the life history diversity assumed essential for bull trout population persistence. Quantifying this variability is important for modelling population dynamics and viability to conserve this threatened species.  相似文献   

7.
8.
Turbot were reared from yolk sack larvae to juvenile in an outdoor semi‐intensive system. Three production cycles were monitored from May to September. A pelagic food chain was established with phytoplankton, copepods and turbot larvae. Abiotic and biotic parameters of lower trophic levels together with turbot larval survival, development, prey electivity and growth were monitored. A decreasing larval survival from 18.4% in May to 13.6% in July and just 7.0% in September was observed. The overall phytoplankton and copepod abundance decreased during the productive season. The turbot larval growth showed significant differences between larvae below (isometric) and above (allometric) 7 mm. Larval fish gut content showed no differences with available prey between production cycles. Therefore, it appears that the available prey concentration is governing their growth in this outdoor system. First‐feeding turbot larvae exhibited active selection for nauplii whereas developed larvae switched to copepodites and adult copepods. Although developing turbot larva exhibited active selection towards copepod size classes, there was no evidence of selective feeding on either of the two dominant copepod species. The turbot larvae's prey ingestion was modelled together with the standing stock of copepod biomass. The model results indicated that the estimated need for daily ingestion exceeded the standing stock of copepods. Hence, the initially established food web was unable to sustain the added turbot larvae with starvation as a consequence. We therefore suggest several solutions to circumvent starvation in the semi‐intensive system.  相似文献   

9.
《Journal of fish diseases》2017,40(3):411-424
The pharmacokinetics of florfenicol (FF) in turbot (Scophthalmus maximus) was studied after single intravenous (10 mg kg−1) and oral (100 mg kg−1) administration. The plasma concentration–time data of florfenicol were described by an open one‐compartment model. The elimination half‐life (t1/2) was estimated to be 21.0 h, and the total body clearance, Cl, was determined as 0.028 L kg h−1. The apparent volume distribution (Vd) was calculated to be 0.86 L kg−1 and the mean residence time (MRTiv) was 30.2 h. Following oral administration, the maximum plasma concentration (Cmax) of 55.4 μg mL−1 was reached at 12 h (Tmax). The absorption constant (ka) was 0.158 h−1. The bioavailability was estimated to be 57.1%. The low bioavailability observed at higher doses was explained by the saturation of the mechanisms of absorption. The drug absorption process was limited by its inherent low solubility, which limited the amount of available FF absorbed in the gastrointestinal tract. Based on the pharmacokinetic data, an optimal dosing schedule for FF administration is hereby provided. Based on the minimum inhibitory concentration found for susceptible strains of Aeromonas salmonicida, oral FF administration of first, an initial dose of 30 mg FF kg−1, followed by 6 maintenance doses at 18 mg kg−1/daily could be effective against furunculosis in turbot.  相似文献   

10.
A rickettsia‐like organism, designated NZ‐RLO2, was isolated from Chinook salmon (Oncorhynchus tshawytscha) farmed in the South Island, New Zealand. In vivo growth showed NZ‐RLO2 was able to grow in CHSE‐214, EPC, BHK‐21, C6/36 and Sf21 cell lines, while Piscirickettsia salmonis LF‐89T grew in all but BHK‐21 and Sf21. NZ‐RLO2 grew optimally in EPC at 15°C, CHSE‐214 and EPC at 18°C. The growth of LF‐89 T was optimal at 15°C, 18°C and 22°C in CHSE‐24, but appeared less efficient in EPC cells at all temperatures. Pan‐genome comparison of predicted proteomes shows that available Chilean strains of P. salmonis grouped into two clusters (p‐value = 94%). NZ‐RLO2 was genetically different from previously described NZ‐RLO1, and both strains grouped separately from the Chilean strains in one of the two clusters (p‐value = 88%), but were closely related to each other. TaqMan and Sybr Green real‐time PCR targeting RNA polymerase (rpoB) and DNA primase (dnaG), respectively, were developed to detect NZ‐RLO2. This study indicates that the New Zealand strains showed a closer genetic relationship to one of the Chilean P. salmonis clusters; however, more Piscirickettsia genomes from wider geographical regions and diverse hosts are needed to better understand the classification within this genus.  相似文献   

11.
Several methods were used in an attempt to develop an age and growth model for the Atlantic angel shark (Squatina dumeril). Band counts from vertebral sections, which were fit to the traditional von Bertalanffy growth equation, the Gompertz growth equation, and the two-parameter von Bertalanffy growth equation, did not produce realistic parameter estimates. Additionally, a length-based Bayesian model was applied to fishery-independent length–frequency data, and a full Bayesian model was fitted to length-at-age data to estimate parameters for von Bertalanffy growth equation. Both the length-based and full Bayesian models failed to converge; the length–frequency data showed high bimodality unrelated to season, year, or other factors, and band counts were not predictable by length. Vertebral band counts were not valid for ageing Atlantic angel sharks, and length-based methods, which require normally distributed length–frequencies, were not appropriate for this data set. This study represents the first attempt at modeling age and growth for this species and provides research guidelines for future research initiatives.  相似文献   

12.
The present study was conducted to evaluate the effects of dietary Eucommia ulmoides (EU) on growth, feed utilization, antioxidant activity and immune responses of turbot fed a basal diet (CON) or EU‐supplemented diets with 5.0 g/kg (EU1), 10.0 g/kg (EU2) and 20.0 g/kg (EU3) EU leaf powder. After 70‐day trial, EU supplementation did not affect nutrient utilization, but reduced feed intake (FI) and specific growth rate (SGR) of fish at doses above 5.0 g/kg. Superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T‐AOC) activities in the EU‐supplemented groups were significantly higher than those in the control group at a dose of 20.0 g/kg. Significantly reduced malondialdehyde (MDA) contents were observed in EU‐supplemented groups at doses over 5.0 g/kg. Furthermore, fish fed 20.0 g/kg EU showed the highest lysozyme (LZM) activity among groups. The EU‐supplemented diets with doses above 5.0 g/kg significantly enhanced the mRNA expressions of cytokines. The expression level of major histocompatibility complex II alpha (MHC IIα) was significantly upregulated compared to that of the control fish when the supplemental level was at 20.0 g/kg. Taken together, the present study indicated that the EU could remarkably enhance the antioxidant activity, non‐specific immunity and maintain an active immune response in turbot.  相似文献   

13.
方亚  黄勇富  王高富 《畜禽业》2011,(12):32-34
对酉州乌羊体重随月龄增长应用Logistic、Gompertz、Richards模型进行生长曲线拟合分析,建立公、母羊的拟合曲线方程及求出拐点体重、拐点月龄。结果表明:三种模型均能很好地拟合公、母羊生长规律,Logistic、Gompertz、Richards模型拟合公羊的拟合度(R2)分别为0.987、0.995、0.987,母羊拟合度(R2)0.968、0.9810.968,三种模型相互比较,Gompertz模型拟合效果最好。  相似文献   

14.
A 10‐day experiment was performed to examine different mono, binary and ternary dietary combinations on survival and growth of D‐shaped and umbone black‐lip pearl oyster, Pinctada margaritifera, larvae. The three tropical microalgae species were the flagellate Isochrysis galbana clone T. Iso (CS‐177) and diatoms Chaetoceros calcitrans (CS‐178) and Chaetoceros muelleri (CS‐176) which were fed to D‐shaped and umbone larvae at a density of 7000 and 14 000 cells mL?1, respectively. A second experiment was performed to investigate the feasibility of replacing T. Iso with a lipid emulsion for both D‐shaped and umbone larvae for 10 and 12 days, respectively. The treatments included only T. Iso, unfed and lipid emulsion to substitute T. Iso at levels of 10% (LIP10), 30% (LIP30) and 100% (LIP100). In the first experiment, results showed that a monospecific diet of T. Iso led to significantly higher (< 0.05) survival and growth of D‐shaped larvae than all the other treatments. Meanwhile, D‐shaped larval survival was significantly lower when only fed C. calcitrans as well as growth for those fed C. calcitrans or in combination with C. muelleri. However, for umbone larvae, survival and growth were significantly higher when fed a binary combination of T. Iso and C. muelleri or the ternary combination of T. Iso, C. muelleri and C. calcitrans compared with all other treatments. For the second experiment, results showed that with increasing lipid emulsion replacement, survival of both D‐shaped and umbone larvae significantly decreased (< 0.05); however, the LIP100 treatment was not significantly different (> 0.05) from the unfed treatment. For D‐shaped larvae, no significant growth difference was detected (> 0.05) between the T. Iso and LIP10 fed treatments while for umbone larvae, the T. Iso, LIP10 and LIP30 were not significantly different (> 005). These results indicate that microalgae combinations appear more necessary for later staged P. margaritifera larvae. In addition, the use of a lipid emulsion appeared to provide some nutrition to the larvae, although more research should be conducted to improve the use of such replacements.  相似文献   

15.
Empirical growth models have widespread application in the field of aquaculture. These models allow estimates of harvest size and waste outputs in addition to nutrient and feed requirements. In an effort to increase the ability to predict shrimp growth, the specific growth rate (SGR) and thermal‐unit growth coefficient (TGC) models were fitted to 15 datasets encompassing growth of Pacific whiteleg shrimp (Litopenaeus vannamei). Shrimp were reared under commercial conditions in Southeast Asia with weights ranging from 0.01 g to 34 g. Growth rates were regressed against body weights to identify changes in growth pattern across life stages. Analysis identified two distinct patterns of growth, with a break point between stanzas at 7.5 g. The body weight exponent of the TGC model, traditionally assumed to be (1 ? b) = 1/3, was solved for iteratively in each identified growth stanza in an effort to improve the goodness of fit of the TGC model. Average body weight exponents in the first and second stanzas were 0.416 and 0.952 respectively. Projected growth trajectories using these exponents resulted in significantly better fits in comparison to the traditional TGC and the SGR on the basis of statistical measures of goodness of fit.  相似文献   

16.
Large and long‐lived piscivorous brown trout, Salmo trutta, colloquially known as ferox trout, have been described from a number of oligotrophic lakes in Britain and Ireland. The “ferox” life history strategy is associated with accelerated growth following an ontogenetic switch to piscivory and extended longevity (up to 23 years in the UK). Thus, ferox trout often reach much larger sizes and older ages than sympatric lacustrine invertebrate‐feeding trout. Conventional models suggest that Strutta adopting this life history strategy grow slowly before a size threshold is reached, after which, this gape‐limited predator undergoes a diet switch to a highly nutritional prey source (fish) resulting in a measurable growth acceleration. This conventional model of ferox trout growth was tested by comparing growth trajectories and age structures of ferox trout and sympatric invertebrate‐feeding trout in multiple lake systems in Scotland. In two of the three lakes examined, fish displaying alternative life history strategies, but living in sympatry, exhibited distinctly different growth trajectories. In the third lake, a similar pattern of growth was observed between trophic groups. Piscivorous trout were significantly older than sympatric invertebrate‐feeding trout at all sites, but ultimate body size was greater in only two of three sites. This study demonstrates that there are multiple ontogenetic growth pathways to achieving piscivory in Strutta and that the adoption of a piscivorous diet may be a factor contributing to the extension of lifespan.  相似文献   

17.
The intention of the study was to investigate the effect of ultrafiltered fish protein hydrolysate (UF) level on growth, feed utilization, apparent digestibility coefficients and proximal intestine peptide transporter 1 (PepT1) mRNA level for juvenile turbot (Scophthalmus maximus L.). Experimental diets (UF‐0, UF‐5, UF‐10, UF‐15 and UF‐20) were prepared containing about 68% plant protein, and fish meal protein was, respectively, replaced by 0%, 5%, 10%, 15% and 20% UF of dietary protein. Diet PP contained about 78% plant protein, and diet CAA contained about 10% crystalline amino acid mixture. All diets were fed to seven triplicate groups of turbot (initial weight 16.05 ± 0.03 g) for 68 days. Fish fed diet UF‐10 had an increasing tendency in growth compared with diets contained UF, while dietary UF level was not significantly correlated with specific growth rate and feed intake. Feed efficiency, protein efficiency ratio and protein productive value significantly correlated with dietary UF level, and fish fed diets contained low‐level UF had higher digestibility than that diets UF‐0, PP and CAA. There was a decreasing tendency in PepT1 expression level with dietary UF level. The results indicated that low‐level UF showed a positive effect on growth and feed utilization in juvenile turbot.  相似文献   

18.
Enteromyxosis caused by Enteromyxum scophthalmi is one of the parasitizations with a higher economic impact on turbot, Scophthalmus maximus (L.), aquaculture. This myxosporean produces severe catarrhal enteritis with abundant inflammatory infiltrates in the lamina propria‐submucosa (LP), epithelial detachment and leucocyte depletion of the lymphohaematopoietic organs. Some advances made on the pathogenesis pointed to a role of apoptosis in the enteromyxosis. Therefore, the main aim of this work was to employ the TUNEL assay and the anti‐(active caspase‐3) immunohistochemical assay to detect apoptotic cells in both healthy and E. scophthalmi‐infected turbot in order to establish the presence and distribution of apoptotic cells during development of the disease. More apoptotic cells located within the gastrointestinal epithelium were observed in the initial stages of the infection in E. scophthalmi‐infected turbot compared with non‐infected turbot. As the infection progressed, a higher degree of apoptosis occurred in the epithelium of folds heavily parasitized. In the severely infected turbot, apoptosis was also found among the leucocytes of the intestinal inflammatory infiltrates. Moreover, the number of active caspase‐3‐positive cells in the lymphohaematopoietic organs tended to increase with disease severity. In view of the results, increased apoptosis in the epithelium may favour the scaling that occurs during enteromyxosis and cell death of leucocytes in the intestinal LP, contributing to leucocyte depletion in severe cases.  相似文献   

19.
The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti‐inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro‐inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm , curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm , curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence‐associated proteases: leishmanolysin‐like peptidase and cathepsin L‐like. At concentrations between 25 and 50 μm , curcumin inhibited the expression of S‐adenosyl‐L‐homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm , curcumin inhibited the expression of the cytokines tumour necrosis factor‐alpha (TNF‐α) and interleukin‐1 beta (IL‐1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti‐inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis.  相似文献   

20.
A 70‐day feeding trial was conducted to investigate effects of dietary organic trace mineral (OTM) mixture levels on survival, growth performance, body composition and antioxidant capacity of juvenile turbot (Scophthalmus maximus). The commercial diet with 0.03% inorganic trace mineral (ITM) premix was used as the control, and other four experimental isonitrogenous (50% crude protein) and isolipidic (12% crude lipid) diets were formulated to contain 0.0375%, 0.075%, 0.1125% and 0.15% OTM mixture respectively. Results showed that there were no significant differences in survival among dietary treatments. However, the growth was not significantly different between the control and OTM supplementation diets. Especially, turbot fed the diet with 0.075% OTM had significantly higher specific growth rate than 0.15%, 0.1125% and 0.0375% OTM treatments (p < .05). Moisture, crude protein, crude lipid and ash of the whole fish body showed no significant differences among dietary treatments. Activities of superoxide dismutase in serum of turbot fed diets with 0.1125% and 0.15% OTM were significantly higher than 0.0375% OTM treatment (p < .05). Activities of total antioxidant capacity and catalase in serum were the highest, while the malondialdehyde content was the lowest when the turbot were fed the diet with 0.075% OTM. In summary, results of the present study suggested that the supplementation of 0.0375% or more OTM in diets could obtain similar performance to the commercial diet with ITM premix, and the optimal amount of OTM supplementation in diets of turbot was approximately 0.075% on basis of growth performance and antioxidant capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号