首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The ‘earthy’ and ‘muddy’ off‐flavours in pond‐reared fish are due to the presence of geosmin or 2‐methylisoborneol in the flesh of the fish. Similar off‐flavours have been reported in fish raised in recirculating aquaculture systems (RAS); however, little information is available regarding the cause of these off‐flavours. Our hypothesis was that earthy and muddy off‐flavour compounds, found previously in pond‐raised fish, are also responsible for off‐flavours in fish raised in RAS. In this preliminary study, we examined water, biofilms in RAS and fillets from cultured arctic charr known to have off‐flavours and requiring depuration using instrumental [solid‐phase microextraction procedure and gas chromatograph‐mass spectrometry (GC‐MS)] and human sensory analyses. Geosmin was present in the samples taken from the biofilter and on the side walls of the tanks. Two‐methylisoborneol was only found in low levels in the samples. The GC‐MS results indicated the presence of geosmin in the fillets (705 ng kg?1), but lower levels were found in the water (30.5 ng L?1). Sensory analyses also detected an earthy flavour (i.e., geosmin presence) in the fillets, and, therefore, it appears that geosmin is the main compound responsible for the off‐flavour in RAS. Further studies are being performed to identify the microorganisms responsible for geosmin production in RAS.  相似文献   

2.
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulating water and in the lateral part of the fish fillet. In water, concentrations up to 51 ng L−1 (GSM) and 60.3 ng L−1 (MIB) were found, while in the fillet, these were up to 9.8 ng g−1 (GSM) and 10.2 ng g−1 (MIB), decreasing with increasing number of PAA applications. PAA applications reduced the levels of off-flavor compounds, although this was insufficient to fully prevent the accumulation of GSM and MIB.  相似文献   

3.
Common off-flavor compounds including geosmin (GSM) bioaccumulate in fish cultured in recirculating aquaculture systems (RAS) resulting in unpalatable fillets that are objectional to consumers. Most RAS facilities relocate fish from grow-out tanks to separate depuration systems with increased water flushing to remediate pre-harvest off-flavors, but certain aspects of this procedure have not been optimized including characterization of water exchange rates that effectively diminish off-flavor. To this end, a study was carried out to evaluate the effects of flushing rate and associated depuration system hydraulic retention time (HRT) on GSM removal from Atlantic salmon Salmo salar originally produced in a semi-commercial scale freshwater RAS. Twenty-six fish (5−7 kg each) were stocked into twelve replicate depuration systems operated with system HRTs of 2.4, 4.6, and 11.3-h, respectively (N = 4). Geosmin was assessed at intervals in system water and fish flesh over a 10-day feed withholding period. Waterborne GSM concentration was affected by flushing rate and associated system HRT (P < 0.05). Depuration systems operated with an 11.3-h HRT had greater waterborne GSM levels at 3, 6, and 10 days post-stocking compared to 2.4 and 4.6-h HRT. A similar trend was generally reflected in salmon flesh. Residual GSM levels were successively higher in fillets on Day 6 from depuration systems with increasingly longer HRT. Geosmin levels were greatest in salmon flesh from the 11.3-h HRT treatment on Day 10, but fillet GSM between the 2.4 and 4.6-h HRT was similar. This research indicates that lowest residual GSM is achieved in water and Atlantic salmon flesh in depuration systems with increased flushing and shorter HRT, i.e., 2.4–4.6-h under conditions of this study. Selection of optimal flushing rate to remediate off-flavor from RAS-produced Atlantic salmon may also be dictated by water and energy use metrics and site-specific water availability among other factors.  相似文献   

4.
Common off-flavor compounds, including geosmin (GSM) and 2-methylisoborneol (MIB), bioaccumulate in Atlantic salmon Salmo salar cultured in recirculating aquaculture systems (RAS) resulting in earthy and musty taints that are unacceptable to consumers. To remediate off-flavor from market-ready salmon, RAS facilities generally relocate fish to separate finishing systems where feed is withheld and makeup water with very low to nondetectable GSM and MIB levels is rapidly exchanged, a process known as depuration. Several procedural aspects that affect salmon metabolism and the associated rate of off-flavor elimination, however, have not been fully evaluated. To this end, a study was carried out to assess the effects of swimming speed and dissolved oxygen (DO) concentration on GSM levels in water and fish flesh during a 10-day depuration period. Atlantic salmon (5–8 kg) originally cultured in a semi-commercial-scale RAS (150 m3 tank) were exposed to a concentrated GSM bath before being transferred to 12 replicated partial reuse depuration systems (5.4 m3 total volume). Two swimming speeds (0.3 and 0.6 body lengths/sec) and two DO levels (90% and 100% O2 saturation) were applied using a 2 × 2 factorial design (N = 3), and each system was operated with a 5-h hydraulic retention time, creating a water flushing to biomass ratio of 151 L/kg fish biomass/day. Geosmin was assessed at Days 0, 3, 6, and 10 in system water and salmon flesh. A borderline effect (P = 0.064; 0.068) of swimming speed was measured for water and fish, respectively, at Day 3, where slightly lower GSM was associated with low swimming speed (0.3 body lengths/sec); however, differences were not detected at Days 6 or 10 when salmon are commonly removed for slaughter. Overall, this research indicates that significant improvements in GSM depuration from RAS-produced Atlantic salmon are not expected when purging with swimming speeds and DO concentrations similar to those tested during this trial.  相似文献   

5.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

6.
Geosmin and 2-methylisoborneol (MIB) are semi-volatile terpenoid compounds produced as secondary metabolites by benthic and planktonic cyanobacteria, several genera of fungi, and various actinomycetes. These off-flavor compounds pose a heavy economic burden in the aquaculture industry rendering fish unmarketable unless purified by purging with large quantities of clean water. In the present study, the presence of off-flavor compounds was examined in a recirculating aquaculture system (RAS) for tilapia culture. In this zero-discharge system, where water from the fish basins is recirculated through parallel aerobic (drum filter and a trickling filter) and anaerobic treatment loops (sedimentation/digestion basin), concentrations of geosmin and, in particular, MIB were highest in the aerobic treatment loop. Lowest concentrations were detected in the anaerobic treatment loop. This latter finding pointed toward a possible reduction of these compounds in this basin. Two bacterial strains of the streptomycetes family were isolated from the aerobic, organic-rich, drum filter and the nitrifying trickling filter. In vitro tests with these isolates, closely related to Streptomyces roseoflavus and Streptomyces thermocarboxydus, revealed that MIB production exceeded geosmin production under all conditions tested and was significantly higher under aerobic than under anoxic conditions. Under the latter conditions, with nitrate as an electron donor, the S. roseoflavus-like isolate was capable of denitrification. Based on the results obtained in this study, it was concluded that aerobic, organic-rich conditions stimulate the growth of actinomycetes and subsequent production of geosmin and MIB in the system. The observed reduction of these compounds in the anaerobic water treatment component may serve in designing treatment steps aimed at alleviating the problem of geosmin and MIB accumulation in recirculating systems.  相似文献   

7.
为了调节循环水系统中养殖水体的pH,根据气体交换原理,设计一种脱二氧化碳(CO_2)装置。采用该装置去除养殖水体中的CO_2,并对由于CO_2含量累积造成的pH下降进行调节,使养殖鱼类处在一个适宜的pH环境中。试验时水温控制在(25±0.5)℃,每1 h取水样测1次pH,每4 h测1次碱度。水样取自养鱼桶内的水,检测前先对水样用40μm孔径针头过滤器进行过滤处理,实验周期24 h。结果显示,循环水系统加装脱二氧化碳装置能有效去除CO_2,使水体稳定在一个适宜的pH范围(7.39~7.42);CO_2质量浓度呈降低趋势,24 h后由开始的13.16 mg/L降低到7~8 mg/L,降低近50%,而不加装脱二氧化碳装置的循环水系统CO_2质量浓度持续上升,24 h后增加到37 mg/L左右,pH持续降低,最终降低到6.72~6.81。研究表明,脱二氧化碳装置能够有效去除水体中的CO_2,使水体pH维持在一个适宜鱼类生长的范围。  相似文献   

8.
A headspace solid-phase micro-extraction (SPME) coupled with GS-MS method was used to measure volatile compounds in fillets from musty off-flavor, muddy off-flavor, and on-flavor channel catfish (Ictalurus punctatus), along with water and soil samples from the farm ponds in which the fish had been raised. Two ponds of each type of flavor were selected, and five fish, water, and soil samples were collected from each pond. Linear and multiple linear regression analyses were carried out between/among off-flavor strength and volatile compound contents to investigate their possible correlations. The combination of two strong off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), was probably mainly responsible for the musty off-flavor in the catfish fillets, and an odorous alcohol, 1-hexanol, was correlated with muddy off-flavor (p =?0.015). There was a strong correlation between beta-cyclocitral and MIB in a pond that gave musty off-flavor catfish contents (p =?0.006), suggesting that these compounds might be generated by similar cyanobacteria. The contents of GSM, MIB, and beta-cyclocitral were high in the water of ponds that yielded off-flavor fish, indicating that catfish might acquire these compounds from pond water.  相似文献   

9.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

10.
Intensive recirculating aquaculture relies on biofilters to sustain satisfactory water quality in the system. Fluidized bed and immobilized cell technologies were used to remove ammonia from the water and maintain fish health. A high‐rate nitrifying fluidized bed biofilter combined with valveless filter was designed for use in a recirculation aquaculture system (RAS). The suspended solids produced during fish culture could automatically be removed using a valveless filter. Natural porosity with fitting proportion, steady fluidization and expanding rate was chosen as the fluidized carrier. The technology of bacterial separation and cultivation was used. The immobilized Rhodopseudomonas palustris (R. palustris) produced through a biotechnologically embedding medium is suitable for fish and could help prevent diseases. Nitrification was promoted through the selective rearing of nitrobacteria in a fluidized bed biofilter. Water quality was improved using fluidized bed biofilter and immobilized R. palustris in the RAS. In addition, the proposed system was able to reduce costs. Maximum fish load was 45 ± 3 kg m?3 in the closed recirculating water fish culture system, and water use was reduced by 80–90%. The total ammonia nitrogen removal rate of the technology was 80–95%, and nitrite N removal rate was above 80%.  相似文献   

11.
The aim of the study was to determine the possibility of experimental media (agglomerate elastomers EPP) application as biological media bed, which serves the purpose of water purification in recirculating aquaculture systems (RAS). RAS enables mass‐production of fish in small volume of water in a limited area. This involves the possibility of multiple usage of water during culture. However, for that purpose of maintaining proper physico‐chemical parameters, water purification from products of metabolism, especially toxic nitrogen compounds, is required. One of the simplest and most effective ways to achieve it is combining application of two types of water filtration: mechanical and biological. It is needed to study new media for biological bed with proper filling is able to purify water from toxic nitrogen compounds.  相似文献   

12.
To obtain optimal yields of channel catfish, Ictalurus punctatus, large quantities of feed are added to ponds. Nutrients released from feed support dense algal and bacterial populations. Although some microbes produce oxygen and remove wastes, certain taxa produce the muddy/earthy off-flavor metabolites, 2-methylisoborneol (1-R-exo-1, 2, 7, 7-tetramethyl-bicyclo-[2, 2, 1]-heptan-2-ol) (MIB) and geosmin (1α, 10β-dimethyl-9α-decalol). Currently, off-flavors are one of the biggest problems affecting the channel catfish industry. Fish exposed to water containing either geosmin or MIB rapidly concentrations of these compounds in their tissues. Conversely, fish placed in water free of off-flavor metabolites exhibited markedly reduced concentrations of MIB after 8 hours and continued to improve in flavor quality throughout 24 hours, indicating a progressive purging or clearing of off-flavor compounds from their tissues. Relatively lean (< 2.5% fat) fish lost MIB more rapidly than fish with greater fat contents (> 2.5% fat). This paper proposes that aquaculture production systems should be managed for maximum production efficiency and yields, and that fish containing off-flavors then could be purged in special facilities. Purging systems that rely on a constant flow require large amounts of water and may not be widely practical. Systems that recirculate water may be more feasible. However, biological filters and other components of recirculating systems may become sources of off-flavors. The early detection of off-flavor-producing taxa and the competitive exclusion of problematic populations may be useful in preventing off-flavor production in recirculating purging systems.  相似文献   

13.
使用质量浓度1mg/L的二氧化氯对循环水养殖池进行月1次、分2d进行的直接泼洒消毒试验,从杀菌效果、对生物膜的损害程度及对养殖鱼体生活状态的影响3个方面进行二氧化氯消毒对循环水养殖系统的影响评价。在第一次消毒前及消毒后24h时,第二次消毒前(即第一次消毒后48h时)及第二次消毒后24h时分别进行水样采集,测定养殖水体的异养菌总数变化,结果显示,第一次消毒后24h时水体的异养菌总数较消毒前有极显著降低(P0.01),而48h时降低不显著(P0.05),第二次消毒后亦变化不显著(P0.05)。同时分析了消毒前后2个月内的养殖水体氨氮、亚硝酸盐氮含量的变化情况,以间接评价二氧化氯对循环系统生物膜的损害性大小。结果显示,在消毒工作完成后7d时水体氨氮、亚硝酸盐含量有明显上升,分别由消毒前的1.0mg/L、0.30mg/L升至1.25mg/L、0.36mg/L的水平,持续约10d才开始降低恢复。在消毒前后观察鱼体生长状态及摄食量结果显示,水体消毒对鱼体状态及摄食量无明显影响(P0.05)。研究表明,在循环水养殖系统中质量浓度为1mg/L的二氧化氯消毒可极显著降低异养菌总数,对鱼体生长状态及摄食量无明显影响,但对生物膜有轻微的损害作用,在养殖生产中应规范使用。  相似文献   

14.
Slow growth and losses to bird predation and infectious diseases in winter can compromise the profitability of silver perch farming. To evaluate over‐wintering silver perch (Bidyanus bidyanus) in a recirculating aquaculture system (RAS), fingerlings (38 g) were stocked in either cages in a pond at ambient temperatures (10–21 °C) or tanks in the RAS at elevated temperatures (19–25 °C) and cultured for 125 days. Mean survival (96%), final weight (146 g), specific growth rate (1.07% day?1) and production rate (28.1 kg m?3) of fish in the RAS were significantly higher than for fish over‐wintered in cages (77%, 73 g, 0.53% day?1, 11.1 kg m?3). Fish from both treatments were then reared in cages for a further 129 days. Final mean weight of fish originally over‐wintered in the RAS was 426 g, while fish over‐wintered in cages were only 273 g. To determine optimal stocking densities, fingerlings (11.8 g) were stocked at 500, 1000 or 1500 fish m?3 in tanks in the RAS and cultured for 124 days. Survival was not affected, but growth was significantly slower and feed conversion ratio higher at 1500 fish m?3 compared with 500 or 1000 fish m?3. Results demonstrate that over‐wintering silver perch in an RAS can produce large fingerlings for grow‐out in early spring. This strategy could eliminate bird predation, reduce losses to diseases and shorten the overall culture period.  相似文献   

15.
Since its first outbreak in Japan in 2003, koi‐herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti‐KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti‐KHV bacteria. Of 581 bacterial isolates, 23 showed anti‐KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti‐KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti‐KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks.  相似文献   

16.
Recirculating aquaculture systems (RAS) discharge management limits the development of the aquaculture sector, because RAS do not automatically result in low nutrient emissions. Research has helped develop discharge management systems such as wetlands and woodchip bioreactors that have been adopted by Danish commercial model trout farms. To further develop the Danish concept, we have modelled and built a novel “zero-discharge” recirculating aquaculture system with an annual capacity of approximately 14 tonnes. The aim of this paper is to describe the entire concept and present the results from the start-up phase of the whole system. The concept includes the treatment of RAS effluent (overflow and sludge supernatant) using a hybrid solution of a woodchip bioreactor, constructed vertical wetland, and sand infiltration. Using this three-step process, the nitrate, phosphorus, and organic matter effluent are decreased to acceptable levels to reuse the water in the RAS process reducing the need for new raw water. In the first nine months of operation, a water treatment field was used as an end-of-pipe treatment to ensure the water was safe to recirculate for fish. During the winter, the water temperature dropped to 2.7 degrees in the sand filter, but the frost did not reach the water levels in any of the treatment processes. It therefore appears that a hybrid solution can operate sufficiently even in winter conditions. In the first year of operation, a woodchip bioreactor can remove 97 % of the nitrate, although the slow start-up of the RAS caused the bioreactor to be N-limited. On average, 79 % and 92 % of the inflow phosphate concentration was removed in the woodchip bioreactor and the entire hybrid treatment field respectively. The wetland and sand filter removed organic matter sufficiently (35 %), but because of the longer than designed actual water residence, it leached from the bioreactor more than was expected. Further experimentation is needed to identify the financial applicability and performance during higher feeding rates.  相似文献   

17.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

18.
循环水养殖系统中的固体悬浮物去除技术   总被引:3,自引:2,他引:3  
循环水养殖系统(Recirculating aquaculture systems,RAS)中固体悬浮物(Suspended solids,SS)的去除效果直接影响到鱼类生长、生物净化效果、系统配置和运行成本等诸多重要因子。根据固体悬浮物产生、物理特性和分布规律,结合颗粒悬浮物去除工艺特点,对去除技术进行系统研究分析。固体悬浮物源自饲料,密度一般为1.05~1.19 g/cm3,运用重力分离、过滤和泡沫分离等工艺通过预处理、粗过滤和精处理三道工艺步骤,可分别去除不同直径的颗粒物质,在达到合理含量的前提下,获得低能耗、低成本和系统稳定运行的综合效果。固体悬浮物的去除符合目标明确、排出及时和区别对待三原则,去除工艺注重相关技术的优化集成。  相似文献   

19.
The high levels of water-reuse in intensive recirculating aquaculture systems (RAS) require an effective water treatment in order to maintain good water quality. In order to reveal the potential and limitations of ozonation for water quality improvement in marine RAS, we tested ozone's ability to remove nitrite, ammonia, yellow substances and total bacterial biomass in seawater, considering aspects such as efficiency, pH-dependency as well as the formation of toxic ozone-produced oxidants (OPO). Our results demonstrate that ozone can be efficiently utilized to simultaneously remove nitrite and yellow substances from process water in RAS without risking the formation of toxic OPO concentrations. Contemporaneously, an effective reduction of bacterial biomass was achieved by ozonation in combination with foam fractionation. In contrast, ammonia is not oxidized by ozone so long as nitrite and yellow substances are present in the water, as the dominant reaction of the ozone-based ammonia-oxidation in seawater requires the previous formation of OPO as intermediates. The oxidation of ammonia in seawater by ozone is basically a bromide-catalyzed reaction with nitrogen gas as end product, enabling an almost complete removal of ammonia-nitrogen from the aquaculture system. Results further show that pH has no effect on the ozone-based ammonia oxidation in seawater. Unlike in freshwater, an effective removal of ammonia even at pH-values as low as 6.5 has been shown to be feasible in seawater. However, as the predominant reaction pathway involves an initial accumulation of OPO to toxic amounts, we consider the ozone-based removal of ammonia in marine RAS as risky for animal health and economically unviable.  相似文献   

20.
Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS). To this end, a study was conducted comparing fillet quality and processing attributes of postsmolt Atlantic salmon fed a fishmeal‐free diet (FMF) versus a standard fishmeal‐based diet, in replicate RAS. Mean weight of Atlantic salmon fed both diets was 1.72 kg following the 6‐mo trial and survival was >99%. Diet did not affect (P > 0.05) processing and fillet yields, whole‐body proximate composition(fat, moisture, protein), fillet proximate composition, cook yield, fillet texture, color, or omega‐3 fatty acid fillet content, including eicosapentaenoic acid and docosahexaenoic acid levels. Whole‐body ash content was greater in salmon fed the FMF diet. The FMF diet resulted in a wild fish‐in to farmed fish‐out ratio of 0:1 per Monterey Bay Aquarium's Seafood Watch criteria due to its fishmeal‐free status and use of lipids from fishery byproduct. Overall, fillet quality and processing attributes were generally unaffected when feeding a diet devoid of fishmeal to postsmolt Atlantic salmon cultured in RAS. [Correction added on 7 September 2017, after first online publication: the P value in Abstract has been changed from “P < 0.05” to “P > 0.05”.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号