首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Japanese flounder juveniles (initial body weight: 7.12 ± 0.02 g) were fed three diets containing 0, 120 and 200 g/kg of carbohydrates (C0, C120 and C200, respectively) for 10 weeks. Results showed that higher dietary carbohydrate intake enabled further deposition of glycogen and lipids in liver and muscle. The mRNA levels of glucokinase (gck), phosphofructokinase (pfkl) and hexokinase (HK) activity involved in glycolysis were significantly up‐regulated in C120 (p < .05) but showed no further up‐regulation except for gck in C200. Besides, the gluconeogenic phosphoenolpyruvate carboxykinase 1 (pck1) mRNA levels were down‐regulated significantly in fish fed the C120 (p < .05). However, further increase in dietary carbohydrate levels increased the mRNA levels and activities of enzymes involved in gluconeogenesis and lipolysis (p < .05). Additionally, plasma glucose remained unchanged in C120 (p > .05) but significantly increased in C200 group (p < .05). In conclusion, Japanese flounder was able to use carbohydrates efficiently through regulation of glucose and lipid metabolism when dietary carbohydrate was not higher than 120 g/kg, while 200 g/kg of dietary carbohydrate caused the deregulation of glucose homoeostasis.  相似文献   

2.
Two experiments were conducted to ascertain the utilization of different carbohydrate sources and different forms of starch present in bagrid catfish (Mystus nemurus) fry. The nutritional quality and starch forms of cornstarch, dextrin, broken rice, and sago flour were evaluated in a 4 × 2 factorial design. All diets were formulated to be isonitrogenous (400 g kg?1 crude protein) and isolipidic (150 g kg?1 crude lipid), fed to triplicate groups of bagrid catfish fry (initial weight 6.04 ± 0.04 g). Growth studies, enzymatic response and postprandial plasma glucose were observed. A two‐way anova (P > 0.05) analysis of the data obtained showed that the final body weight, specific growth rate (SGR) and food conversion ratio (FCR) were significantly affected by carbohydrate source, but not significantly affected by starch form. Fish fed broken rice and corn starch had similar SGR and FCR compared to fish fed with dextrin and sago flour. The postprandial plasma glucose trend in fish fed with corn starch and broken rice showed a gradual increase while sago flour and dextrin‐fed fish peaked at 2 and 3 h, respectively. Lipogenic enzyme (G6PDH) activity were more pronounced than gluconeogenic enzyme (ME) in M. nemurus irrespective of carbohydrate source and starch form. Therefore, we suggest that raw broken rice and corn starch are suitable carbohydrate sources in the M. nemurus diet.  相似文献   

3.
This study determined whether accumulated liver and visceral lipid in yellow perch can be alleviated by feeding an appropriate starch source. We compared the growth performance, nutritional composition and health of yellow perch fed a control diet (no added starch) and three diets with corn, potato or wheat starch (200 g/kg diet) to replace an equal proportion of fishmeal in the control diet. Dietary starch led to increased bulk density, hardness and gelatinization levels of feed pellets compared with the control diet. At the end of an 8‐week feeding, all fish fed the test diets had similar growth rates (p > .05). However, the wheat starch diet resulted in significantly enlarged livers and increased accumulation of lipid in the liver, viscera and whole body (p < .05). This diet also caused significantly higher levels of fasting glucose, aspartate aminotransferase and alkaline phosphatase activities in serum than the control diet. Liver cell diameters were larger, and Kupffer cell numbers were lower in the fish fed the wheat starch than those fed the control diet. Potato or corn starch had less impact on fish health and is considered to be an appropriate carbohydrate sources for yellow perch under the current testing conditions.  相似文献   

4.
The ability of juvenile silver perch (Bidyanus bidyanus) to utilize dietary raw wheat meal, raw wheat starch, gelatinized wheat starch and dextrin as energy sources to spare protein for growth was quantified. Energy utilization and protein sparing were assessed by comparing the weight gain, energy retention efficiency, protein retention and body composition of silver perch that had been fed a series of diets in which the basal diet (low carbohydrate) was systematically replaced with graded levels of each carbohydrate ingredient or an inert diluent, diatomaceous earth. The protein content decreased as the carbohydrate content increased, giving four different protein to energy ratios for each of the four carbohydrate sources (except for the 60% inclusion level, at which only three carbohydrate sources were tested). Silver perch were efficient at utilizing carbohydrate for energy to spare protein. Silver perch fed diets containing up to 30% wheat meal, raw wheat starch, gelatinized wheat starch or dextrin exhibited similar growth, protein retention and energy retention efficiency to the fish fed the basal diet. Weight gain of silver perch fed diets containing wheat meal or carbohydrates at 45% inclusion content had significantly reduced weight gain when compared with fish fed the basal diet. However, protein retention and energy retention efficiency were similar or better. Whole‐body protein levels of silver perch remained constant regardless of carbohydrate sources, and there was no evidence of increasing whole‐body lipid concentrations for fish fed diets with up to 60% dietary carbohydrate. Silver perch were more efficient at utilizing processed starch (either gelatinized starch or dextrin) than wheat meal or raw wheat starch.  相似文献   

5.
A 60‐day experiment was carried out to investigate dietary starch levels on growth performance, hepatic glucose metabolism and liver histology of largemouth bass, Micropterus salmoides. Fish (initial weight 22.00 ± 0.02 g) were fed five graded levels of dietary corn starch (0, 50, 100, 150 and 200 g/kg). Fish fed low (0 and 50 g/kg) dietary starch showed significantly higher weight gain than other groups (p < .05). Liver lipid and glycogen accumulations were induced when dietary starch higher than 100 g/kg. After 20 days of feeding, hexokinase activity and mRNA expression were decreased in fish fed dietary starch higher than 150 g/kg (p < .05) and the pyruvate kinase showed the opposite tendency. Insulin receptor 1 (irs1), glucagon‐like peptide‐1 receptor and glucose transport protein 2 (glut2) mRNA expression were decreased with the increasing dietary starch after 10 days of feeding (p < .05). These results indicated gluconeogenesis was depressed and β‐oxidation was enhanced in response to high dietary starch, while the glycolysis was inhibited and endocrine system was impaired when fish fed high dietary starch; then, glucose homeostasis was disturbed and finally led to the glucose intolerance of largemouth bass.  相似文献   

6.
To increase the current knowledge about the relationship between nutritional status and the digestive capacity of Siberian sturgeon (Acipenser baerii), we addressed the effect of starvation‐refeeding and macronutrient composition on growth parameters and key digestive enzyme activities in A. baerii. Acipenser baerii juveniles were fed four different diets for 3 weeks, then starved for 2 weeks and allowed to refed for 5 weeks with the same diets. Another group of fish were fed 10 weeks with the corresponding diets. Among 10‐week fed fish, high‐protein diets promoted higher body weight values, while the lowest specific growth rate was observed in fish fed a low‐protein, medium‐carbohydrate, high‐lipid diet (p < .05). At the end of the experiment, in fish refed for 5 weeks following a feeding‐starvation cycle and in 10‐week fed animals, the higher levels of blood glucose, triglycerides and cholesterol were found in fish fed low‐protein diets (p < .05). In all treatments, 2 weeks of starvation decreased α‐amylase activity in the intestine (p < .05), while 4 days of refeeding increased lipase (p > .05) and α‐amylase activity in the intestine as well as pepsin in the stomach (p < .05). Our findings suggest that A. baerii maintains a high capacity to digest proteins and lipids after 2 weeks of starvation and that α‐amylase can be used as an indicator of the nutritional status in fish submitted to starvation‐refeeding cycles. Indeed, refeeding with high‐protein and CHO:L ratio diets after starvation could improve the growth rate of A. baerii in culture.  相似文献   

7.
We examined the effects of dietary carbohydrate sources on growth performance, digestive ability, immunity and glycometabolic enzyme activity of Rhynchocypris lagowskii Dybowski. The fish were fed with glucose, sucrose, dextrin and corn starch for 8 weeks. Final body weight, weight gain rate, specific growth rate, feed efficiency ratio and protein efficiency ratio were positively related to the complexity of carbohydrates in diet as were the levels of total antioxidant capacity, complement 3, protease, glutathione peroxidase, amylase, alkaline phosphatase, lysozyme, catalase, superoxide dismutase, fructose‐1,6‐bisphosphatase, hexokinase and pyruvate kinase. Malondialdehyde content, hepatic glycogen, glucose‐6‐phosphate dehydrogenase, hepatosomatic index, viscerosomatic index and crude lipid content were negatively related to the complexity of carbohydrates in diet. Therefore, Rhynchocypris lagowskii Dybowski fed with corn starch or dextrin showed positive effects in terms of growth, digestion and absorption, glycolysis, gluconeogenesis, antioxidant capacity and immunity than those fed with glucose or sucrose.  相似文献   

8.
The growth performance of carnivorous southern catfish (Silurus meridionalis) was lower when fed a diet containing glucose as a carbohydrate source than when fed one containing starch. To test whether this decreased growth performance was partly due to higher metabolic costs induced by the fast assimilation of dietary glucose, the postprandial metabolic responses of southern catfish juvenile (36.7 ± 1.9 g) fed diets containing either raw or pre-cooked corn starch and glucose were investigated at 27.5°C. The peak metabolic rate of fish fed a raw corn starch diet was significantly higher than that of fish fed precooked corn starch and glucose diets (P < 0.05). The specific dynamic action (SDA) coefficients (energy expended on SDA as a percentage of energy content of the meal) of fish fed raw or precooked corn starch diets were significantly higher than that of fish fed a glucose diet (P < 0.05). The postprandial metabolic rate of fish fed a raw starch diet displayed a classic response – increased metabolic rate immediately after feeding, followed by a decreased metabolic rate several hours after feeding – as has been documented earlier in this species. However, the postprandial metabolic rate of fish fed a glucose diet had two alternating cycles of increasing and decreasing metabolic rate, which has not been reported previously. This bimodal pattern of the SDA curve was also found in a subsequent experiment in which purified d-glucose (0.1 g dry mass) was packed into sections of grass carp (Ctenopharyngodon idellus) intestine (0.05 g dry mass). The results suggest that the digestibility and absorption speed of the dietary carbohydrate has a significant effect on postprandial metabolic response in juvenile southern catfish. The results of this study may provide useful data in terms of the utilization of dietary carbohydrates by carnivorous fishes.  相似文献   

9.
Juvenile brook trout were fed on six isonitrogenous and isolipidic diets, containing graded levels of gelatinized corn starch (50, 100, 150, 200, 250, 300 g/kg diet) for 81 days. Cellulose was used to compensate carbohydrate loss. The weight gain, specific growth rate and protein efficiency ratio increased as the dietary carbohydrate level increased from 50 to 150 g/kg, but decreased thereafter (p < .05). Quadratic regression analysis revealed that the optimum dietary carbohydrate level was in the range of 187.1–194.1 g/kg. In addition, serum alanine transaminase and aspartate transaminase activities, as well as glucose content, were highest in the group fed on 300 g/kg carbohydrate (p < .05). The hepatic malondialdehyde level increased with dietary carbohydrate levels (p < .05). The hepatic lysozyme activity increased as dietary carbohydrate level increased from 50 to 150 g/kg and decreased thereafter (p < .05). The overall survival rate after hypoxia challenge (45 min; dissolved oxygen content: 2.2 mg L?1) decreased with dietary carbohydrate levels (p < .05). Taken together, these results suggested that optimal level of dietary carbohydrate could improve growth performance. However, excessive dietary carbohydrate intake (> 250 g/kg) may decrease innate immunity status, increase oxidative stress and reduce resistance to hypoxia stress in brook trout.  相似文献   

10.
The present study was designed to investigate the effects of dietary apple cider vinegar (ACV) on digestive enzyme activity and growth performance as well as immune responses and antibacterial activity of skin mucus in green terror (Andinoacara rivulatus). Fish were fed diets supplemented with 0%, 1%, 2% and 4% of ACV (40.830 ppm acetic acid concentration) for 63 days. The final weight and weight gain values were observed to be significantly higher in fish fed with 2% of ACV compared to the control group (p < .05). ACV inclusion in the diets had significant effects on SGR (%) and FCR values (p > .05). ACV treatment resulted in a significant increase in the intestinal protease, α‐amylase, lipase and alkaline phosphatase activities compared to control (p < .05). The activities of digestive enzymes in fish fed with 2% and 4% of ACV diets were significantly higher than the other groups (p < .05). The total protein content, alternative haemolytic complement, alkaline phosphatase, total immunoglobulins and lysozyme activities of skin mucus increased significantly in fish fed with ACV diets (p < .05). In conclusion, administration of ACV enhanced digestive enzyme activity, growth performance, immune responses and the immune properties of skin mucus, and it can be used as a natural growth promoter and immunostimulant in green terror culture.  相似文献   

11.
This study was performed to determine the optimum dietary carbohydrate (CHO) levels of sea cucumber, based on the parameters of growth, digestive enzymes, digestibility, non‐specific immune enzymes and acute low‐salinity (20 g/L) stress and high‐temperature (30°C) stress tolerance. Diets with eight different CHO (dextrin) levels (32.9, 107.6, 192.5, 257.2, 316.8, 428.0, 482.4 and 572.8 g/kg) were fed to sea cucumber juveniles (0.49 ± 0.01 g) for 60 days. Significant higher amylase activity was observed in sea cucumbers fed diet with CHO ranging between 32.9 and 192.5 g/kg than that of other treatments (p < .05). The sea cucumbers fed with 192.5 g/kg CHO showed significantly higher acid phosphatase activity than the treatments of 482.4 and 572.8 g/kg CHO (p < .05), and significantly higher alkaline phosphatase activity than other treatments (p < .05, except 257.2 g/kg). The treatments of 428.0–572.8 g/kg were found significantly lower values than other treatments in apparent digestibility coefficients for dry matter and crude protein (p < .05). The sea cucumbers fed with 192.5, 257.2 and 316.8 g/kg CHO showed better tolerance to high‐temperature (30°C) and low‐salinity (20 g/L) stress than other treatments. In brief, the optimal dietary CHO level for the growth of juvenile sea cucumber is 177.96 g/kg. However, excessive CHO will inhibit amylase enzyme activity and decrease digestibility, resulting in low growth of sea cucumber.  相似文献   

12.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

13.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

14.
Carbon stable isotopes were used as trophic markers to investigate the utilization of dietary terrestrial‐source carbohydrates by sea cucumber Apostichopus japonicus. Sea cucumbers were fed by five different types of diets with the ingredients containing Sargassum muticum either without starch or with one of the four starches including corn starch, sweet potato starch, tapioca starch and potato starch. After the 70‐day feeding trial, the carbon isotopic compositions of A. japonicus appeared to reflect those of corresponding dietary components. The average contribution of corn starch (22.0%) to the growth of A. japonicus was slightly higher than the expected contribution (20%). While the proportional contributions of sweet potato, tapioca and potato starches (6.0%, 7.0% and 4.0%, respectively) were all considerably lower relative to the expected contributions. These results indicated that A. japonicus could utilize corn starch more efficiently than sweet potato, tapioca or potato starch. Moreover, A. japonicus fed diet containing corn starch showed the highest specific growth rates which were significantly higher than those fed diets containing potato or tapioca starch. The results of the present study suggested that the corn starch could be used as dietary carbohydrate source in the artificial feeds for A. japonicus farming.  相似文献   

15.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

16.
The optimum water temperature required for the normal growth of Nile tilapia is 25–30°C. In this study, tilapia was reared under suboptimal temperature (21.50 ± 1.50°C) and fed four diets with fish oil (FO), corn oil (CO), sunflower oil (SFO) and linseed oil (LnO) for 8 weeks. The results revealed improved final weight, average daily gain and intestinal amylase activity in the LnO group compared to FO and SFO groups (p < .05). The feed intake was increased significantly in FO and LnO groups compared to CO and SFO groups, while the feed conversion ratio was increased in the FO group (p < .05). The CO, SFO and LnO diets resulted in higher carcass lipids than fish fed FO, while CO decreased the ash content (p < .05). The growth hormone was significantly lowered by LnO, followed by SFO, while CO improved the serum alkaline phosphatase activity (p < .05). Glutathione peroxidase enhanced in fish fed SFO, while the lowest activities were recorded in fish fed FO (p < .05). Total superoxide dismutase was significantly elevated by CO and LnO when compared with fish fed FO and SFO (p < .05). Substituting FO with vegetable oils had normal intestinal and liver histological appearance. It could be concluded that substituting FO with either CO or LnO for Nile tilapia could maintain the normal growth performance and feed utilization with enhanced antioxidant capacity under suboptimal temperature.  相似文献   

17.
Gelatin and carboxymethyl cellulose (CMC) were often used as binders due to their binding ability. To investigate the effects of gelatin and CMC supplementation on feed quality, intestinal ultrastructure and growth performance of gibel carp, six pelleted feed were formulated: control; supplemented with gelatin (10 g/kg, 30 g/kg and 50 g/kg); and supplemented with CMC (10 g/kg and 30 g/kg). Increased gelatin supplementation levels reduced feed solubility and pellet softening (p < .05) and decreased chemical oxygen demand in the surrounding water after pellets were immersed (p < .05). Increased levels of gelatin supplementation enhanced digesta viscosity and reduced intestinal microvilli length and digestive enzymes activities (chymotrypsin and amylase; p < .05) of fish. Fish‐fed diets supplemented with 30 g/kg gelatin had higher levels of plasma total free amino acids and glucose (p < .05) than fish fed 10 g/kg and 50 g/kg gelatin. Feed supplemented with 10 g/kg CMC were softer than those supplemented with 30 g/kg CMC (p < .05); fish‐fed diets supplemented with 10 g/kg CMC had longer intestinal microvilli (p < .05) than fish fed 30 g/kg CMC. Thus, our results indicated that either gelatin or CMC is applicable to supplement in the feed for improving feed quality and without negative effect on growth performance of gibel carp.  相似文献   

18.
The purpose of this study was to investigate the effects of dietary visceral protein hydrolysate (VPH) of rainbow trout on performance of juvenile Oncorhynchus mykiss. The antioxidant property of VPH was 85% ± 1.6%. Four diets were prepared including VPH free as the control and three diets with 5, 10 and 20 g/kg of VPH inclusions. Juvenile rainbow trouts (n = 252, 9.74 ± 0.22 g) were randomly distributed to experimental tanks. Final results showed the maximum amounts of weight gain and SGR and the lowest FCR value in fish fed with 10 g/kg VPH (p < .05). The highest carcass protein and fat contents were observed in 10 g/kg VPH treatment and the control diet, respectively (p < .05). The largest fat and dry matter digestibility were recorded in fish fed by 5 g/kg VPH (p < .05), while the control and 10 g/kg VPH diets showed the highest levels of protein digestibility (p < .05). Dietary inclusion of VPH improved SOD enzyme activity (p < .05). The results indicate that a diet containing 10 g/kg of VPH inclusion can improve growth performance and some other examined factors in juvenile O. mykiss.  相似文献   

19.
A 56‐day feeding trail was conducted to evaluate the effects of taurine (Tau) supplementation on growth performance, amino acid profile and heat stress resistance capacity in juvenile Takifugu rubripes (initial body weight: 32.28 ± 0.20 g). Tiger puffer were distributed into five groups and each received one of the following diets: each diet was supplemented with 0 (T1), 5 (T2), 10 (T3), 20 (T4) or 50 (T5) g Tau/kg, respectively. Growth performances were significantly ameliorated with fed diet T3 (p < .05). The Tau content of muscle increased significantly as dietary Tau increased (p < .05). Compared to the control group, fish fed diets T4 and T5 showed significantly higher concentration of triglyceride and urea, respectively (p < .05), while taurine transporter (TauT) gene and IGF‐1 gene expression increased significantly in fish fed diets T3 and T4, respectively (p < .05). After acute heat stress, HSP70 gene expression levels were significantly greater in the livers and spleens of T. rubripes (p < .05) fed diet supplemented with Tau. Levels of complement C4 were highest in fish fed 10 g/kg Tau (p < .05). These data suggested that dietary supplemented with taurine indicated positive effects on growth performances, amino acid profile and resistance against heat stress for T. rubripes.  相似文献   

20.
A 65‐day feeding trial was conducted to investigate the effects of dietary antimicrobial peptide APSH‐07 on the growth performance, anti‐oxidation responses, stress resistance and intestine microbiota of large yellow croaker Larimichthys crocea. Four isonitrogenous and isolipidic diets were formulated with 0, 30, 60 and 90 mg/kg of APSH‐07, respectively. The results showed that the fish fed with 90 mg/kg of dietary APSH‐07 had the significantly highest specific growth rate (p < .05). The activities of catalase, superoxide dismutase, the total anti‐oxidative capacity and lysozyme had the significantly highest values in liver of fish fed with 90 mg/kg of dietary APSH‐07 (p < .05). Serum glucose increased significantly in fish fed diets without APSH‐07 supplementation after temperature stress, while serum cortisol increased significantly in those after trawl stress (p < .05). Fish fed with 90 mg/kg of dietary APSH‐07 showed significantly higher operational taxonomic units, ACE estimator and phylogenetic diversity whole tree in intestine microbiota compared to fish fed without APSH‐07 (p < .05). In conclusion, under the present experimental condition, 90 mg/kg of antimicrobial peptide APSH‐07 supplementation in diet had the better growth performance, higher anti‐oxidation and stress resistance capacity, and a potentially more beneficial intestine microbial community of large yellow croaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号