首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs (Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs ($ ha?1 calculated as change in operating profit divided by unit change of the trait) for additional DM produced in different seasons of the year in four regions. The EV of early spring DM was consistently high across all regions, whereas EV for late spring DM was moderate to low. Genotype × environment analysis revealed significant reranking of DM yield among ryegrass cultivars across regions. Hence, separate performance values (PVs) were calculated for two mega‐environments and then combined with the corresponding season and region EV to calculate the overall EV for twenty‐three perennial ryegrass and fifteen short‐term ryegrass cultivars. The difference in operating profit between the highest ranked and lowest ranked perennial ryegrass cultivar ranged from $556 ha?1 to $863 ha?1 year?1 depending on region. For short‐term ryegrasses used for winter feed, the corresponding range was $394 to $478 ha?1 year?1. Using PV for DM yield, it was estimated that plant improvement in perennial ryegrass has added $12–$18 ha?1 year?1 (depending on region) operating profit on dairy farms since the mid‐1960s.  相似文献   

2.
Defining the critical nitrogen concentration (Nc; g N kg?1) for maximum growth of forage brassicas will aid in the fertilizer management of these crops. Typically, the Nc value decreases with increasing crop biomass. In this paper, we used a nitrogen (N) response experiment with kale (Brassica oleracea) to define a critical N dilution (Nc = 55·3 × biomass?0·47). However, at biomass <3·4 t ha?1, a constant NC of 31·2 g N kg?1 was found. This N dilution curve compared favourably with published data sets for a range of forage brassicas but was substantially different from the established N dilution curve for oilseed rape (Brassica napus). This study also found a strong relationship (R2 = 0·81) between the nitrogen nutrition index (NNI) and the NO3 content of forage brassicas from a range of data sets. The NNI is the actual N concentration of the shoot as a ratio of the Nc from the established curve. The relationship between NNI and NO3 contents was significantly different between leafy forage brassica crops and root forage brassicas. For each 0·1 increase in NNI, the proportion of total N that was in the form of NO3 increased by 2·7% for leaf/stem brassicas and 0·60% for root crop brassicas. The critical dilution curve defined in this study can be used to manage fertilizer N in forage brassica crops, so that growth can be maximized but the risk of high NO3 concentrations in the forage can be minimized.  相似文献   

3.
Nitrogen fertilization is a common practice for sustaining forage production in forage systems in southeastern United States. Warm-season annual legumes may be an alternative forage to warm-season perennial grasses that do not require N fertilization. Sunn hemp (Crotalaria juncea L.) is a fast-growing, warm-season annual legume native to India and Pakistan. The objective of this 2-year study was to assess the herbage accumulation (HA), atmospheric N2 fixation (ANF) and nutritive value of sunn hemp. Treatments were the factorial arrangement of two sunn hemp cultivars (“Crescent Sun” and “Blue Leaf”), three seeding rates (17, 28 and 39 kg seed/ha) and seed inoculation (inoculated or non-inoculated seeds), distributed in a randomized complete block design with four replicates. Crescent sun had greater HA (3,218 vs. 1764 kg DM/ha) and ANF (41 vs. 25 kg N/ha). Blue leaf had greater crude protein (CP) (188 vs. 176 g/kg) and in vitro digestible organic matter (IVDOM) concentrations (564 vs. 531 g/kg) than crescent sun. Non-inoculated seed had greater CP than inoculated seed, 188 and 177 g/kg, respectively, and inoculation did not affect HA. Intermediate seeding rate (28 kg/ha) decreased HA (2002 kg DM/ha), while HA from high and low seeding rates (17 and 39 kg/ha, respectively) did not differ (2,863 and 2,615 kg DM/ha respectively). Planting non-inoculated crescent sun at 17 kg/ha seeding rate is a feasible management practice to produce sunn hemp in subtropical regions; however, inoculation should always be recommended for proper establishment.  相似文献   

4.
Here, we propose a new approach to determine the level of plant N nutrition, based on the relationship between chlorophyll meter (CM) readings and total biomass in potato plants. The objectives of this work were i) to determine the critical curve CM (CMc) readings; ii) to establish the relationship between N nutrition index of CM (NNICM), and relative tuber yields (RY), and iii) to establish the crop N required (NR). The experiments were carried out during four growing seasons. The cultivar Innovator was planted in a randomized complete block design with three replications and four N treatments (N0, N1, N2 y N3) to cover the range from deficient through surplus N. The CM reading was assessed with the Minolta SPAD 502 at different times during each growing season. The NNICM was determined as the ratio between the actual CM reading (CMa) and the CMc. The NR was determined as the difference between actual N uptake and the critical N uptake, divided the N utilization efficiency. The CMc for cultivar innovator was determined [CMc?=?51.4 W (Mg ha_1)?0.13; R2?=?0.83]. The NNICM ranged from 0.78 to 1.17. The relation between RY and NNICM was expressed as a linear-plateau function. For NNICM ≥0.9, the RY was near 98.0 %, whereas for NNICM below 0.9, the RY decreased [RY?=?7.73?+?100.0 NNICM; R2?=?0.55]. The relationship between the observed N uptake and the estimated N uptake values showed positive significant associations (p?<?0.0001). We conclude that the CM reading can be used as an easy and fast tool to predict NR in potato plants under field conditions during the vegetative growth period.  相似文献   

5.
Adequate seed production is essential for cultivar success in perennial ryegrass turf and forage industries, but improvement is limited by the complexity of yield components and low-rank correlations between selection and production environments. This study examined seed yield components among 20 perennial ryegrass entries in both spaced plantings (selection environment) and swards (production environment) at two locations in Minnesota. Competitive (23 plants/m2) and non-competitive (3 plants/m2) spaced-plant nurseries were tested. Competitive spaced-plant total yield was highly correlated with sward yield (rs = 0.64 and 0.66, p < 0.01) at both locations, whereas the non-competitive environment showed no correlation. Structural equation modelling (SEM) was used to explore the indirect and direct relationship of fall vegetative growth, winterkill, and yield components on total seed yield in all environments. Fertile tiller number (spikes plant−1/m−2) exhibited both strong direct and indirect influence on total seed yield in all environments. However, the importance of fertile tiller number in the SEM was reduced with increased plant competition. The SEM showed that both weight per spike and seed yield per spike influenced total yield in spaced plants; however, neither consistently predicted total sward yield. The ratio of these two traits (g seed spike−1/g spike−1) gave an index of fertility that was easy to measure and had a superior correlation with sward yield at two locations (rs = 0.81 and 0.54, p < 0.05) when spaced plants were under competition. Results suggest that increasing competition in spaced plantings and selecting for spike fertility may more accurately identify superior plant material compared to lower competition environments.  相似文献   

6.
In the low fertility acid soils of the Orinoquian savannas of Colombia, Urochloa humidicola cv. Tully or Humidicola is one of the most widely planted tropical forage grasses for improving livestock productivity. Low nutritional quality of this grass limits sustainable livestock production in this region. In this study, we conducted a phenotypic evaluation under field and greenhouse conditions of one of the first hybrid populations of U. humidicola generated from the forage breeding program of CIAT. Our objective was to identify a set of new hybrids of U. humidicola that combine improved productivity and nutritional quality plus the biological nitrification inhibition (BNI) trait/ability to reduce nitrogen (N) losses via leaching and nitrous oxide (N2O) emissions. To this end, we tested 118 hybrids (planted in pots) in the greenhouse for over 6 months and measured potential nitrification rates (NR) using soil microcosm incubation. NR values observed ranged from 0.27 to 5.75 mg N-NO3 kg soil−1 day−1. Later, 12 hybrids with different levels of NR were selected and field-tested in the Orinoquia region over a 4 years period (2013–2017) for dry matter production, nutrition quality (crude protein, in vitro digestibility and fibres content) and NR in each year. In the rainy season of 2018, two hybrids with superior agronomic performance and contrasting field level NR (Uh08/1149 and 0450) were subjected to analysis of soil-borne N2O emissions after fertilization during 13 days. The NR values recorded were not directly correlated with the forage quality parameters evaluated, however, the two grasses with the lowest NR values were among those with the highest biomass production, crude protein content, and N uptake. The grass hybrid Uh08/1149 and the germplasm accession CIAT 16888 were found as materials with superior forage value, with production of 14.1 and 14.6 tons dry matter ha−1 year−1 (up to 8% higher than the cv. Tully), crude protein of 11.5 and 9.1% per cut (up to 20% higher than the cv. Tully), and N uptake of 31.6 and 25.7 kg N ha−1 cut−1 (up to 30% higher than the cv. Tully). Additionally, these two grasses are likely to exhibit high-BNI ability, with potential to improve N use efficiency in managed pastures.  相似文献   

7.
Finnish N fertilizer application regulations for forage grasses are based on field experiments mainly conducted in the 1960–1970s with cultivars and management practices typical of the time. In order to update the yield response function of N, to make it better suited to current grassland farming, field experiments were conducted at two sites in 2015–2017 with two cultivars of timothy (Phleum pratense L.) and one of meadow fescue (Festuca pratensis Huds.). Dry matter (DM) yield, nutritive value and N balance were evaluated, with N application levels 0, 150, 200, 250, 300, 350, 400 and 450 kg N ha−1 year−1. The grasses were harvested three times per season. The data indicate that the DM yield response was significantly stronger, and N was used more efficiently for DM production than earlier without compromising the nutritive value, especially during the first two years. The third harvest produced on average 23% of the annual yield, utilizing N efficiently. N application rates below 350 kg N ha−1 year−1 did not cause substantial overwintering losses or lodging. The data indicate that with changing climate and improved cultivars and management practices, there is a need to modify the rates and timing of N application. The results suggest that N application levels could be increased by at least 50 kg N ha−1 year−1 from the current maximum accepted rate (250 kg N ha−1 year−1) without too high NO3- or CP concentrations in feed, or too high N balance that indicates increasing risk of N leaching.  相似文献   

8.
Nitrogen fertilizer is applied to supplement soil nitrogen supply to maximize forage brassica crop dry-matter production. However, nitrogen fertilizer applications in excess of that required to maximize growth result in potentially toxic nitrate–nitrogen (NO3–N) concentrations in grazeable plant tissues. Three experiments, two for forage kale at Lincoln (Canterbury) and one for forage rape at Hastings (Hawke's Bay) in New Zealand were grown under different rates of nitrogen (0–500 kg N ha−1) to determine the effect of different rates of nitrogen on NO3–N content of different plant parts of the crops. One of the kale experiments was grown with either full irrigation or no rain and no irrigation over summer, hereafter referred to as summer drought. The NO3–N concentration on a whole plant (weighted average) basis increased from 0·1 mg g−1 dry matter for the control plots to 2·30 mg g−1 for the 500 kg N ha−1 plots for forage kale. It increased from 0·99 for the control plots to 3·37 mg g−1 for the 200 kg N ha−1 plots for forage rape crops. However, NO3–N concentration increased with N supply under the summer-drought plots from an average of 0·33 mg g−1 when ≤120 kg N ha−1 was applied to 2·30 mg g−1 for the 240 kg N ha−1 treatments but was unaffected by N supply under irrigation. The NO3–N concentrations were higher in the stems and the petiole (which included the midrib of the leaf) than leaves in all three experiments. The NO3–N concentration was highest at the bottom of the kale stem and decreased towards the top. We recommend N application rates based on soil tests results, and for conditions similar to the current studies up to 300 kg N ha−1 under irrigation and adjusted lower N rates for regions prone to dry summers.  相似文献   

9.
Grasses with fast fibre degradation are required by intensive pasture‐based animal production systems to maximize intakes and productivity. To select fast‐degrading elite cultivars, a repeatable, rapid and inexpensive screening method should be developed, so large numbers of samples can be evaluated. This study refined the experimental procedure for the in sacco incubation technique using fresh (not dried) perennial ryegrass (Lolium perenne L.). Pre‐ruminal incubation treatment and ratio of forage weight to the surface area of the in sacco bag have been tested to evaluate their effects on ryegrass degradation kinetic parameters in the bovine rumen. The timing of sampling and the number of sampling time points were also examined. Results indicated that warming the bags in water prior to incubation led to a faster dry‐matter (DM) degradation in the first 12 h. If ratio of forage to bag surface area was between 26 and 45 mg DM cm?2, degradation parameters were not affected by bag fill. Sampling between 9 and 12 h was critical for determining degradation rate. From these results, an improved in sacco incubation procedure is recommended for screening of ryegrasses used for cultivar selection. The principles demonstrated here for ryegrass may be applicable to other forages, although the critical sampling times for measuring degradation rate are likely to differ.  相似文献   

10.
Eleven laboratory‐scale trials were undertaken in different years where ryegrass (Lolium perenne L.) or lucerne (Medicago sativa L.) were ensiled with different concentrations of tannin extracts (quebracho, Schinopsis balansae Engl., mimosa, Acacia mearnsii DE WILD.), and the effects on protein degradation were assessed. The dry‐matter (DM) content in grass silages ranged between 186 and 469 g/kg and in lucerne silages between 187 and 503 g/kg. Tannin extract, either quebracho or mimosa, was applied at 0–30 g/kg forage DM. Commercial additives such as Lactobacillus plantarum, formic acid or hexamine + NaNO2 were applied in two of the grass trials and in six of the lucerne trials. Eight of the trials incorporated a maximum ensiling duration of 90 or 180 days in addition to replicates which were opened and evaluated at earlier stages. All trials included silages which were assessed after at least 49 days of anaerobic storage. The crude protein (CP) fraction A (non‐protein nitrogen, NPN) as proportion of total CP, served as the main indicator for proteolysis. In ryegrass, in general, the level of proteolysis was lower than in lucerne. A correlation of DM content in silages and degree of proteolysis was only evident for ryegrass. In both forages, the degradation of true protein slowed considerably after 24 days of ensiling. True protein was conserved most with the highest level of tannin extract addition. However, in lucerne, the combination of formate with lactobacilli was equally effective up to 330 g DM/kg, and deamination was further inhibited by formic acid compared to tannin extracts.  相似文献   

11.
Effects of season (SEAS), organic fertilization with laying hen manure (N) and harvest frequency (FREQ) on forage yield and composition were evaluated in a high‐density mulberry forage bank, established under low‐input tropical farming conditions. The experiment, replicated over two consecutive years, was arranged in 18 treatments resulting from a 3 × 3×2 factorial design which combined three FREQ (60, 90 and 120 d), 3 N rates (100, 300 and 500 kg N ha?1 year?1) and the two seasons (RAIN and DRY). Forage yield, leaf‐to‐stem ratio, the edible fraction (EDIB, %), nutrient content and the maturity indexes were monitored. Either forage yield or qualities by plant fraction were strongly affected by SEAS, FREQ, N rate and by their interactions. Effects of FREQ and N were modulated by SEAS. Increasing FREQ during RAIN negatively affected EDIB yield and quality after 90 d, while increasing ligneous fraction. During DRY, longer FREQ allowed higher total forage and EDIB yields. Leaves were more abundant in RAIN, and its yield was increased with fertilization but only during this season. Maturity indexes were higher in DRY than in RAIN. Under the conditions of this experiment, harvesting at 60 and 90 d in RAIN and DRY, respectively, with an N rate of 300 kg N ha?1 year?1 seems the best agronomic choice for an optimal compromise between forage yield and nutritive value.  相似文献   

12.
Mixed swards of white clover–grass mixtures in highly productive environments often fail to reach the minimum recommended annual clover proportion of about 0·30. This study assessed the effect on clover content and total dry matter (DM) yield of two spring N applications (0 and 45 kg N ha?1) and two distances between drilled grass‐rows (0·18 and 0·36 m) over 3 years for mown swards of white clover–Italian ryegrass (Trifolium repens–Lolium multiflorum) in binary mixtures in northern Italy. An additional aim was to determine the advantage of association of grass–clover compared with grass and clover monocultures. On average, N fertilization of mixtures resulted in almost 9% higher total yield (P < 0·01; mean response = 18·1 kg of total DM per kg of N) but decreased the clover proportion (0·250 vs. 0·312). Wider grass‐row spacing increased clover proportion (0·327 vs. 0·234; P < 0·01) with no reduction of total DM yield. N fertilization × grass‐row spacing interaction occurred only for clover content (P < 0·01). Without N fertilization, mixtures out‐yielded clover and grass pure stands. With N fertilization, at double rate to pure grass, yields from mixtures were greater than from clover and comparable to Italian ryegrass.  相似文献   

13.
Intercropping (IC) cereals and legumes could be an option for obtaining forage suitable for ensiling and enabling reduced N fertilization. Two experiments were performed in central Italy with durum wheat (Triticum durum Desf.) and field bean (Vicia faba L. var. minor) grown for forage production in IC and as sole crops (SC) with different N rates (20 and 50 kg ha?1) and row ratios (1:1 and 2:1 cereal/legume). The aims were to assess (i) whether IC is a feasible option to reduce N fertilization; (ii) the best combination of practices to obtain forage suitable for ensiling; and (iii) competition/facilitation effects exerted by field bean on durum wheat. Results showed IC allowed fertilizer‐N reduction and led to improved forage yield with better quality, compared with SC. Land equivalent ratio indicated a high efficiency of the IC, by up to 26% with respect to SC. Field bean was the dominant species of IC, but N fertilization reduced its competitive ability and enhanced that of wheat. In the intercrop fertilized with 50 kg N ha?1, the proportion of the wheat in the herbage (0·34–0·41 of the total dry matter) was sufficient for ensiling of the forage mass. Field bean exerted both competition and facilitation effects on the cereal. N uptake of durum wheat was greater under IC with beans than as wheat SC.  相似文献   

14.
The effect of nitrogen (N) fertilization on the dry‐matter (DM) yield and nutritional value of sorghum (Sorghum sp., cv. Jumbo) and black oat (Avena strigosa cv., IPR 61) was investigated in the context of forage and livestock production in southern Brazil. Sorghum was cultivated with 0, 37·5, 75, 150, 225, 300 and 375 kg N ha?1 during the summer crop seasons of 2010/11 and 2011/12. Black oat received 0, 40, 80, 120, 160, 200 and 240 kg N ha?1 in the winter of 2011. According to the adjusted polynomial regression, sorghum DM yield increased in response to N up to 288 (12·9 t ha?1) and 264 kg ha?1 (5·6 t ha?1) in 2010/11 and 2011/12 respectively. Crude protein (CP) content of sorghum was highest at 349 and 328 kg N ha?1, but in vitro dry‐matter digestibility (IVDMD) was highest at 212–207 kg N ha?1 in 2010/11 and 2011/12 respectively. Sorghum neutral detergent fibre (NDF) and acid detergent fibre (ADF) were not affected by N fertilization. In black oat, the maximum DM yield (6·0 t ha?1) was obtained with 187 kg N ha?1; the IVDMD, NDF and ADF were not affected by N fertilization, but the CP content increased up to 220 kg N ha?1. It is concluded that these forage species can improve the year‐to‐year amount and quality of forage produced but high rates of N fertilizer are required to achieve high yields. Fertilizer N rates of 210–280 kg N ha?1 in sorghum and 180 kg N ha?1 in black oat in the crop rotation provide the greatest responses in DM yield consistent with good nutritional quality for livestock production.  相似文献   

15.
Potassium fertilization in intensive grassland systems is particularly important on sandy soils with limited K storage capacity. A 3‐year plot experiment was conducted in south‐western Australia to determine the critical K concentration in herbage dry matter (DM) of annual and Italian ryegrass required to achieve 0.95 of the maximum yield, under best‐practice grassland management. A factorial design was employed with eight fertilizer K rates (range 0–360 kg ha?1 year?1) and two ryegrass species replicated four times, on a sandy soil site managed over 7 years to deplete mean soil Colwell K concentration to 42 mg/kg. Herbage was defoliated six times per year at the 3‐leaf stage of regrowth. Herbage DM yield, macronutrient and micronutrient concentrations were measured at each defoliation. Dry‐matter yield increased significantly (< .001) with increasing levels of K fertilizer in all 3 years and the effect was curvilinear, while 0.95 of the maximum herbage DM yield was achieved at an annual K fertilizer application rate of 96, 96 and 79 kg/ha respectively. At these K fertilizer application levels, the mean K concentration of herbage DM over the 3 years was derived to be 11.4, 12.7 and 11.2 g/kg respectively. Sodium, magnesium and calcium concentrations of herbage DM all declined significantly (< .001) as the K concentration increased. Grassland producers on sandy soils should target a K concentration in herbage DM of 16 g/kg for annual ryegrass and Italian ryegrass‐dominant swards to ensure K availability is not limiting herbage production.  相似文献   

16.
The inclusion of legumes in semi‐arid native grasslands may promote the productivity and nutritive value of forage. This study was designed to assess the effect of legumes (the introduced legume Medicago sativa or the native legume Dalea purpurea) and soil P fertility (addition of 0, 50, or 200 P2O5 kg/ha at seeding) on the dry matter and nutrient content of native grasses mixtures, compared with the commonly used introduced forage grass Bromus biebersteinii grown with M. sativa. Plant harvests were performed in September 2008, July 2009 and September 2009. Plants nutrient content, δ15N value and dry matter were analysed. Results show that the M. sativa enhanced the N and P concentrations of native grass mixtures early in the summer, as well as the N concentration in Bouteloua gracilis in late summer of the driest year, 2009. The higher AM fungal diversity promoted by M. sativa was positively correlated with the dry matter and nitrogen uptake of M. sativa and with the P concentration of native grasses, in early summer. Overall, this study shows that M. sativa promoted beneficial AM fungal taxa and improved forage production in the semi‐arid prairies.  相似文献   

17.
Six annual legumes were evaluated as components of cereal-grass-legume intercrops in two experiments at two sites differing in elevation by 789 m. Barley (Hordeum vulgare L.) and Westerwolds rye-grass (Lolium multiflorum Lam.) were seeded on all intercrop plots. Dry-matter (DM) yield, crude protein (CP) and organic matter digestibility (OMD) were measured. DM yield and N content were used to estimate legume N fixation. Experiment 1 was conducted at both sites. At the lower site, Persian clover (Trifolium resupinatum L.) and annual alfalfa (Medicago sativa L.) accounted for 70% of the DM yield in harvest 1 (July), increased CP and OMD, but did not affect intercrop yield. They increased harvest 2 (August/September) intercrop yield by 263% and CP concentration by 65 g kg?1 DM. They increased harvest 3 (October) yield by 275% and CP concentration by 78 g kg?1 DM. Inclusion of striate lespedeza (Lespedeza striata) did not affect intercrop yield or quality. Annual legumes failed to establish at the higher elevation site and therefore had no effect on DM yield or forage quality. In Experiment 2, in which the performance of Westerwolds ryegrass was also compared with that of Italian ryegrass, and conducted at the lower site only, Persian clover and berseem clover (T. alexandrinum L.) increased CP of all three of the year's harvests. These two species contributed 29% of the DM yield in the first harvest (July) but did not affect total intercrop yield. They increased harvest 2 (August) yield by 313%. Persian clover increased harvest 3 (October) yield by 318% and berseem clover increased harvest 3 yield by 405%. Barrel medic (Medicago truncatula) and snail medic (M. scutellata) contributed 29% of harvest 1 yield, and increased both DM yield and CP content. Medics did not regrow. Aubade Westerwolds ryegrass contributed a greater percentage of the DM yield than did Maris Ledger Italian ryegrass at harvests 1 and 2. Ryegrass type did not affect total DM yield but did affect forage quality; intercrops containing the Italian ryegrass had higher CP at harvest 2 and higher OMD at harvest 3 than those containing the Westerwolds ryegrass. Over both experiments, at the lower elevation site, stands with Persian clover, berseem clover or alfalfa produced 80% of the yield of barley-ryegrass receiving 250 kg N ha?1, and 165% of the yield of unfertilized barley-ryegrass. Berseem and Persian clover fixed about the same amount of N over the growing season; 188 kg N ha?1 in Experiment 1 and 134 kg N ha?1 in Experiment 2.  相似文献   

18.
Intercropping has been a globally accepted practice for forage production, however, consideration of multiple performance criteria for intercropping including forage production, feed use efficiency and ruminal greenhouse gas emissions needs to be further investigated. A two-year field study was conducted to evaluate forage dry matter (DM) yield, nutritive value, feeding values and land-use efficiency as well as ruminal carbon dioxide (CO2) and methane (CH4) emissions of intercropped orchardgrass (Dactylis glomerata) and alfalfa (Medicago sativa) sown in five intercropping ratios (100:0, 75:25, 50:50, 25:75, and 0:100, based on seed weight) and three nitrogen (N) fertilizer levels (0, 50, and 100 kg ha−1). Increasing alfalfa proportion and N fertilizer level increased soil nutrients and the two-year total DM yield. Intercropping increased both land and nitrogen use efficiency (NUE) compared with monocultures. Greater NUE was obtained when N fertilizer was applied at 50 kg ha−1, compared with 100 kg ha−1. Increasing the proportion of alfalfa in intercrops increased the crude protein yield and rumen undegraded protein yield. Harvested forage intercrops were incubated with ruminal fluid for 48 h. Degraded DM yield, CO2 and CH4 emissions increased with increasing alfalfa proportion in intercrops. Overall, the 75:25 of orchardgrass-alfalfa intercrops was recommended as the best compromise between high forage productivity, superior feed use efficiency and low ruminal greenhouse gas emissions through complementary effects. The results indicate that the appropriate N fertilization level would be 50 kg ha−1 for acquiring higher nitrogen use efficiency and forage productivity.  相似文献   

19.
Abstract

Plant-based diagnosis is one of the most important methods to determine nitrogen (N) content of crops. Our objective was to establish the relationship between soil-plant analysis development (SPAD) values and N nutrition index (NNI) during the three developmental stages of rice and apply the SPAD meter as diagnostic tools for predicting grain yield response to N fertilization. We determined the SPAD values of four uppermost fully expanded leaves of two rice cultivars at six N fertilization levels at three growth stages and examined the relationship between SPAD values and NNI. The critical N concentration (Nc) was 5.31 W–0.5 in Xiushui63, and 5.38 W–0.49 in Hang43, where W is the total shoot biomass. The correlation between SPAD value and NNI varied with the leaf position, developmental stage, and variety. The lower leaf appeared to be more sensitive to the N level than the upper leaf in the response of biomass, and could be more suitable as a test sample for N status diagnosis, especially in the booting and heading stage. The dependence of grain yield on SPAD values of the fourth fully expanded leaf (L4) was significant at booting stage (R2L4 = 0.82** in 2011, R2L4 = 0.72** in 2012). Ratio of SPAD values of L4 to that in the N-saturated plot (RSPAD) (R2L4 = 0.92** in 2011, R2L4 = 0.77** in 2012) and NNI (R2 = 0.96** in 2011, R2 = 0.86** in 2012) at booting stage demonstrated a closer relationship with grain yield.  相似文献   

20.
Plains rough fescue ( F estuca hallii) is an important forage grass species in western Canada. Seed for use in pastures and ecological restoration is in high demand but supply is limited because F. hallii is an erratic seed producer. Seed producers require an understanding of the factors that influence flowering and seed set in this species. The aim of this study was to assess the effect of irrigation and nitrogen fertilization on the flowering and growth of F. hallii in a native rough fescue prairie in Alberta, Canada. Irrigation had a strong positive effect on seedhead density, whereas fertilization had limited effects on growth and reproduction of F. hallii. These results demonstrate that under field conditions, available moisture is likely to be a key factor driving flowering and seed production in F. hallii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号