首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
红三叶草丛枝菌根对有机磷的吸收   总被引:3,自引:1,他引:3  
The capacities of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae and Glomus versderme, tomineralize added organic P were studied in a sterilized calcareous soil. Mycorrhizal (inoculated with either of the AM fungi) and non-mycorrhizal red clover (Trghlium pmtense L.) plants were grown for eight weeksin pots with upper root, central hyphal and lower soil compartments. The hyphal and soil compartmentsreceived either organic P (as Na-phytate) or inorganic P (as KH2PO4) at tbe rate of 50 mg P kg-1. No P wasadded to the root compartments. Control pots received no added P. Yields were higher in mycorrhizal than innon-mycorrhizal clover. Mycorrhizal inoculation doubled shoot P concentration and more than doubled total P uptake of plaflts in P-amended soil, irrespective of the form of applied P. The mycorrhizal contributionto inorganic P uptake was 80% or 76% in plants inoculated with G. mosseae or G. verefforme, respectively. Corresponding values were 74% and 82% when Na-phytate was applied. In the root compartments of the mycorrhizal treatments, the proportion of root length infected, hyphal length density and phosphatase activity were all higher when organic P was applied than when inorganic P was added.  相似文献   

2.
A pot experiment was conducted to investigate the mobilization of sparingly soluble inorganic andorganic sources of phosphorus (P) by red clover (Trghlium pmtense L.) whose roots were colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae and in association with the phosphate-solubilizing (PS) bacterium Bacillus megaterium ACCC10010. Phosphate-solubilizing bacteria and rock phosphate hada synergistic effect on the colonization of plant roots by the AM fungus. There was a positive interaction between the PS bacterium and the AM fungus in mobilization of rock phosphate, leading to improved plant P nutrition. In dual inoculation with the AM fungus and the PS bacterium, the main contribution to plant P nutrition was made by the AM fungus. Application of P to the low P soil increased phosphatase activityin the rhizosphere. Alkaline phosphatase activity was significantly promoted by inoculation with either the PS bacterium or the AM fungus.  相似文献   

3.
VA菌根对土壤酸度的耐性   总被引:5,自引:0,他引:5  
A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular(VA)my-corrhizal fungi on colonization rate,plant height,plant growth,hyphae lenth,total Al in the plants,ex-changeable Al in the soil and soil pH by comparison at soil pH 3.5,4.5 and 6.0 Plant mung bean(Phaseolus radiatus L.)and crotalaria(Crotalaria muronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil,Ten VA mycorrhizal fungi strains were tested,including Glomus epigaeum(No.90001),Glomus caledonium(No.90036),Glomus mosseae(No.90107),Acaulospora soo.(No.34),Scutellopora het-erogama(No.36),Scutellospora calopsora(No.37),Glomus manihotis(No.38).Gigaspora spp.(No.47),Glomus manihotis(No.49),and Acaulospora spp.(No.53).Being the most tolerant to acidity,strain 34 and strain 38 showed quicker and higher-rated colnization without lagging,three to four times more in number of nodules,two to four times more in plant dry weighy,30% to 60% more in hyphae length,lower soil exchaneable Al,and higher soil pH than without VA mycorrhizal fungi(CK).Other strains also could improve plant growth and enhance plant tolerance to acidity,but their effects were not marked.This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects.In the experiment,acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.  相似文献   

4.
A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with cowpea seeds. After 60 days the positive impact of AM inoculation on the growth of cowpea was more pronounced in the red soil than in the yellow-brown soil, with significantly higher (P < 0.01) mycorrhizal colonization rate, shoot dry weight and total P content in shoot tissues for the red soil. Both in the yellow-brown and red soils, AM inoculation significantly (P < 0.01) reduced shoot DEHP content, implying that AM inoculation could inhibit the uptake and translocation of DEHP from roots to the aboveground parts. However, with AM inoculation no positive contribution to the degradation of DEHP was found.  相似文献   

5.
As common soil fungi that form symbioses with most terrestrial plants,arbuscular mycorrhizal(AM) fungi play an important role in plant adaptation to chromium(Cr) contamination.However,little information is available on the underlying mechanisms of AM symbiosis on plant Cr resistance.In this study,dandelion(Taraxacum platypecidum Diels.) was grown with and without inoculation of the AM fungus Rhizophagus irregularis and Cr uptake by extraradical mycelium(ERM) was investigated by a compartmented cultivation system using a Cr stable isotope tracer.The results indicated that AM symbiosis increased plant dry weights and P concentrations but decreased shoot Cr concentrations.Using the Cr stable isotope tracer technology,the work provided possible evidences of Cr uptake and transport by ERM,and confirmed the enhancement of root Cr stabilization by AM symbiosis.This study also indicated an enrichment of lighter Cr isotopes in shoots during Cr translocation from roots to shoots in mycorrhizal plants.  相似文献   

6.
Symbiotic fungi are involved in plant flooding tolerance, while the underlying mechanism is not yet known. Since polyamines (PAs) and proline are also associated with stress tolerance, it is hypothesized that the enhancement of stress resistance by symbiotic fungi is associated with changes in PAs and/or proline. The aim of this study was to analyze the effect of inoculation with Funneliformis mosseae and Serendipita indica on plant growth, PAs, and proline and the metabolisms in peach (Prunus persica) under flooding. Two-week flooding did not affect root colonization frequence of F. mosseae, while it promoted root colonization frequence of S. indica. Under flooding, plants inoculated with F. mosseae and S. indica maintained relatively higher growth rates than uninoculated plants. Funneliformis mosseae promoted root ornithine (Orn) contentration and arginine (Arg) and Orn decarboxylase activities under flooding, which promoted putrescine (Put), cadaverine (Cad), and spermidine (Spd) contentrations. Conversely, S. indica decreased contentrations of Arg, Orn, and agmatine and Arg decarboxylase activities, thus decreasing PA contentrations under flooding. Polyamines were negatively correlated with the expression of PA uptake transporter genes, PpPUT1 and PpPUT2, in peach. Polyamine transporter genes of F. mosseae (FmTPO) and S. indica (SiTPO) were regulated by flooding, of which FmTPO1 was positively correlated with Put, Cad, and Spd, along with positive correlations of Spd with SiTPO1, SiTPO2, and SiTPO4. Under flooding, F. mosseae decreased proline concentration, while S. indica increased proline concentration and correlated with expression of a △1-pyrroline-5-carboxylate synthetase gene, PpP5CS2. It was thus concluded that F. mosseae modulated polyamine accumulation, while S. indica induced proline accumulation to tolerate flooding.  相似文献   

7.
采用通气堆沤对石油烃污染土壤进行生物修复   总被引:20,自引:0,他引:20  
Laboratory simulation studies and a composting pilot study were conducted to evaluate the capacity of three strains of fungi, indigenous fungus Fusarium sp. and Phanerochaete chrysosporium and Coriolus Versicolor, to remediate petroleum-contaminated soils. In laboratory, the fungi were inoculated into a liquidculture medium and the petroleum-contaminated soil samples for incubation of 40 and 50 days 5 respectively. In the 200-day pilot study, nutrient contents and moisture were adjusted and maintained under aerobiccondition in composting units using concrete container (118.5 cm × 65.5 cm × 12.5 cm) designed specially for this study. The laboratory simulation results showed that all the three fungi were effective in degrading petroleum in the liquid culture medium and in the soil. At the end of both the laboratory incubations, the degradation rates by Phanerochaete chrysosporium were the highest, reaching 66% after incubation in liquid culture for 50 days. This was further demonstrated in the composting pilot study where the degradation rate by P. chrysosporium reached 79% within 200 days, higher than those of the other two fungi (53.1% and 46.1%), indicating that P. chrysosporium was the best fungus for bioremediation of soil contaminated with petroleum. Further research is required to increase degradation rate.  相似文献   

8.
A pot experiment was conducted to study the plant growth and fruit yields of cucumber (Cucumis sativus L.) on a greenhouse soil with or without inoculation of arbuscular mycorrhizal fungi (AMFs) and Fusarium oxysporum f. sp. cucumerinum under unsterilized conditions. Two AMF inocula were tested: only one AMF strain Glomus caledonium 90036 and an AMF consortium mainly consisting of Glomus spp. and Acaulospora spp. There were four treatments including no inoculation (control), inoculation with F. oxysporum but without mycorrhizae (FO), inoculation with F. oxysporum and G. caledonium (FO+M1), and inoculation with F. oxysporum and the AMF consortium (FO+M2). Cucumber plants were harvested at weeks 3 and 9 after transplanting. Compared with the control, the FO treatment without AMF inoculation had less biomass both at weeks 3 and 9 (P < 0.05) and had higher incidence of Fusarium wilt and produced no cucumber fruit at week 9. Both FO+M1 and FO+M2 treatments had higher mycorrhizal colonization than the treatments which received no AMF inoculation at week 3 (P < 0.05), but only the FO+M2 treatment elevated plant biomass, decreased the incidence of Fusarium wilt, and improved cucumber yields to the same level as the control at week 9. The results indicated that the AMF consortium could suppress Fusarium wilt of cucumber and, therefore, showed potential as a biological control agent in greenhouse agroecosystems.  相似文献   

9.
The effects of nitrogen,phosphorus and potassium application level,seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization.There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations.The equilibrium index of nutrient amount ,content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2.The optimum nutritive proportion of nitrogen:phosphorus:potassium assimilated by the plants was about 10:2:9 at the ripening stage.But the content and the proportion varied with the growth stages,Therefore,the nutrient in rice plant populations should be in a dynamic equilibrium.So as to achieve high yield.  相似文献   

10.
粘土矿物中钾的生物活化: Ⅱ. 外生菌根真菌(的作用)   总被引:2,自引:1,他引:1  
Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4, KCl-saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCl-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.  相似文献   

11.
磷胁迫下AMF对玉米生长的影响   总被引:1,自引:0,他引:1  
研究在低磷的南方酸性红壤中,3种磷水平(20、40、60 m g/kg)下,接种丛枝菌根真菌G.m osseae和G lom us versif orm e对玉米营养生长的影响。结果表明,菌根的形成可使玉米的株高、鲜重增加,促进玉米的营养生长;在低磷水平下,菌根侵染率最高,玉米的株高、鲜重增加也最显著,其中接种G.m osseae的处理其株高和茎叶鲜重的增加达到极显著水平。  相似文献   

12.
【目的】不同丛枝菌根 (abuscular mycorrhizal,AM) 真菌菌种 (株) 因其分离地点及宿主的不同,其生理发育与生态功能差异显著,尤其是土壤养分状况对其影响更明显。研究不同土壤磷水平对 AM 真菌侵染宿主及生长发育繁殖的影响,以及不同 AM 真菌对玉米生长及氮磷吸收的影响,可以深化了解 AM 真菌与土壤磷的关系。 【方法】采用盆栽试验,以玉米为宿主植物,土壤灭菌后分别添加 0、50、200、500 mg/kg 4 个水平的磷营养 (P0、P50、P200、P500),并分别接种 6 种 AM 真菌,以不接种为对照。测定了 AM 真菌侵染率、丛枝丰度、孢子数、菌丝密度、玉米植株氮磷比 (N/P) 生态化学计量特征,讨论了不同土壤磷水平与 AM 真菌生长发育间的关系,以及 AM 真菌对玉米吸收利用氮、磷的影响。 【结果】在 P50 条件下,AM 真菌的侵染率、根内丛枝结构、根外生物量 (孢子数、菌丝密度) 显著高于不加磷 P0 和 P200 和 P500 处理,而且 AM 真菌侵染及生长发育指标在高磷水平时,显著下降。不同磷水平处理下,不同 AM 真菌对玉米的侵染能力及生物量存在明显差异。在 P0 和 P50 条件下,接种 G.m 处理侵染率达到 75%,菌丝密度达 240 m/g,显著高于其他五个 AM 真菌。AM 真菌 C.c、R.a、C.et 的菌根侵染状况及生物量次之,D.s、D.eb 最差。在高磷 P200 和 P500 条件下,仅有 F.m 真菌处理的侵染状况及生物量最高。在 P0、P50 水平下,接种 F.m、R.a、D.eb 显著降低了植株氮含量;在不加磷 (P0) 水平下,接种处理均显著促进了玉米植株中磷含量的提高,在 P50 水平下,F.m 植株磷含量显著高于不接种对照;在 P0、P50、P200 水平下,接种 AM 真菌处理降低了玉米植株中 N/P 比,且不同菌种间存在差异,接种真菌 F.m 处理的 N/P 比明显最低。 【结论】土壤添加低量磷 (50 mg/kg) 更适合 AM 真菌的侵染及生长发育,也利于菌根效应的发挥。侵染能力及效应以耐高磷菌种 F.m 最好,然后依次为 C.c、R.a、C.et。在适量磷条件下,接种 AM 真菌能够调节植株体 N/P 比达到平衡,改善植物营养状况,促进玉米生长。  相似文献   

13.
A greenhouse pot experiment was conducted to investigate the effect of application of coal gangue (CG) at different rates (0, 5, 10, 20, and 50%) and inoculation with two arbuscular mycorrhizal (AM) fungi Glomus intraradices and Glomus mosseae, as mediating plant adaptation to soil amended with CG, on the nutrient content of forage maize. The results showed CG amendment at all levels and both AM fungi significantly improved the nutrient content of the plant as compared to control. In general, the highest shoot dry weight and nutrient phosphorus, iron, and zinc (P, Fe, and Zn) were obtained with 10% CG and G. intraradice treatments, which were 49.68, 30.49, 16.72, and 75.71% higher than those of the control plants, respectively. Therefore, 10% dose of CG may be considered as a suitable dose for amendment in the corn cultivation bed in terms of providing nutrient contents for this plant as well as AM fungi root colonization.  相似文献   

14.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

15.
The effect of three arbuscular mycorrhizal (AM) fungi on phosphorus (P) nutrient activation and acquisition by maize from spatially heterogeneous sand was investigated using dual-mesh packages enriched with different P concentrations and compared with non-mycorrhizal cotrols. As would be expected the AM fungi significantly enhanced leaf photosynthetic rate and the biomass and P concentrations in shoots and roots. All three fungi (Glomus intraradices, Glomus mosseae and Glomus etunicatum) displayed the capacity to dissolve inorganic P and promoted P nutrient availability in the packages (P patches). G. etunicatum showed the largest effect comparing with Glomus intraradices and Glomus mosseae, particularly in packages with high concentrations of P. Possible mechanisms involved include the acidification of the P patches by the AM fungi, promotion of the dissolution of the P, and more marked effects of the three fungal isolates with increasing enrichment of P in the patches. Inoculation with G. etunicatum resulted in greater acidification compared to the other two fungi. We conclude that AM fungi can promote P availability by acidifying the soil and consequently exploiting the P in nutrient patches and by facilitating the growth and development of the host plants.  相似文献   

16.
ABSTRACT

A pot experiment investigated the response of two maize inbred lines with contrasting root morphology and phosphorus (P) efficiency to inoculation with Glomus mosseae or Glomus etunicatum compared with non-mycorrhizal controls. Soil phosphorus was supplied at rates of 10, 50, and 100 mg P kg ?1 soil. Root length, specific root length, and specific phosphorus uptake of maize line 178 (P-efficient) were significantly higher than of line Hc (P-inefficient). Percentage of root length colonized showed the opposite trend regardless of soil P supply level. The two maize lines did not differ significantly in growth response to mycorrhizal colonization. Root colonization rate decreased with increasing soil phosphorus supply. The beneficial effect of the two AM fungi on plant growth and P uptake was greatest at low soil P level and the responses were negative at high P supply. Mycorrhizal responsiveness also decreased with increasing P supply and differed between the two mycorrhizal fungal isolates.  相似文献   

17.
This greenhouse study aimed to analyze the impact of arbuscular mycorrhizal (AM) fungal associations on maize (Zea mays L. hybrid Pioneer 3905) in order to compare their functional compatibility and efficiency. The AM fungus species used for this study were Glomus aggregatum, G. etunicatum, G. mosseae, and G. versiforme. Shoot and leaf masses, chlorophyll, soluble protein, total and reducing sugar, carbon (C), and nitrogen (N) concentrations, and glutamine synthetase (GS) activity in the maize leaves were analyzed. The root colonization ranged from 26% to 72% depending on the AM fungus species. Leaf mass was significantly higher when maize plants were colonized with G. etunicatum in comparison to the non‐AM control. The mycorrhizal effect on dry leaf mass ranged from 15.9% to 23.9% depending on the AM species. However, the total shoot mass did not differ significantly among the treatments. The mycorrhizal treatment had a marginally significant effect on the chlorophyll concentrations in maize leaves. The protein concentration was the highest in the plants colonized with G. etunicatum and the N percentage was significantly higher in the leaves of plants colonized by G. versiforme or G. aggregatum than those with G. mosseae. However, the AM colonization did not significantly alter the GS activity among the treatments. The highest sugar concentrations were detected in the leaves of plants colonized by G. versiforme. The sugar concentrations as well as the C percentage were lower in the leaves of plants colonized by G. etunicatum compared to the other mycorrhizal treatments but the values were comparable to the non‐AM control. Our overall results suggest that the expression of the mycorrhizal potential in the maize host plants varies among AM fungal species.  相似文献   

18.
More details have yet to be indicated on the interactions between arbuscular mycorrhizal (AM) fungi and phosphorus (P) chemical fertilization under field conditions. Accordingly, the objectives were to: (1) evaluate the combined effects of mycorrhizal fungi and chemical P fertilization on maize yield, yield components, and nutrient uptake and (2) indicate the optimum rate of P chemical fertilization (P1, P2, P3) with the use of mycorrhizal fungi (Glomus intraradices and G. mosseae). A factorial experiment using randomized complete blocks with three replicates, conducted at the Research Station of the Faculty of Agriculture, Islamic Azad University, Tabriz branch, Iran. Results indicated the significant effect of P, AM fungi, and their interaction on most of the measured traits. Grain yield (7909.3 kg/ha), maize nutrient content of P (0.39%), zinc (Zn) (42.1 mg/kg), iron (Fe) (68.3 mg/kg), and the colonization rate (47.5%) were all the highest by the interaction of G intraradices × P2.  相似文献   

19.
Effects of inoculation with three different arbuscular mycorrhizal (AM) fungi (Glomus etunicatum, Glomus constrictum, and Glomus mosseae) on arsenic (As) accumulation by maize were investigated by using soil spiked with As at rates of 0, 25, 50, and 100 mg kg?1. The root colonization rates by the three fungi were significantly different (G. mosseae > G. etunicatum > G. constrictum) and decreased markedly with increasing As concentration in the soil. Inoculation with G. etunicatum or G. mosseae increased maize biomass and phosphorus (P) accumulation (G. mosseae > G. etunicatum) and reduced As accumulation in shoots (G. mosseae ≈ G. etunicatum), whereas inoculation with G. constrictum had little effect on these parameters. Inoculation with G. mosseae produced greater biomass and P uptake and less shoot As accumulation, and therefore it may be a promising approach to reduce As translocation from contaminated soils to plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号