首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
基因组选择(genomic setection,GS)是继标记辅助选择(marker-assisted selection,MAS)之后发展起来的新一代畜禽遗传评估的新方法.近年来,不少学者从各方面对GS在畜禽育种中的运用进行了研究,结果发现,与其他方法相比,GS优势明显,是当前畜禽遗传育种领域的研究热点.作者系统地阐述了GS估计染色体片段效应的方法及其准确性比较,详细介绍了影响GS准确性的因素、GS的经济效益,以及世界各国学者研究GS在实际育种中的应用情况,最后简述了中国畜禽育种开展GS策略所面临的挑战及其展望.  相似文献   

2.
相较于传统的育种方法,全基因组选择(genomic selection,GS)通过对拟留种的个体进行早期选择和增加选择的准确性进而加快育种的遗传进展。通过改进GS方法无法再缩短育种的世代间隔,因而如何提高GS的准确性以获得额外的遗传进展一直是GS研究的核心问题。当前,各种组学技术不断成熟,从公开的资料或前期的研究积累获取生物学先验信息已比较容易。因而,如何在GS模型中整合已知的先验信息进而提高GS的准确性以获得额外的遗传进展成为当前育种研究的热点问题。本文对生物学先验信息的类型以及整合先验信息的GS方法进行综述,探讨了这些方法在家畜育种中的应用和前景,以期为家畜育种中开展整合生物学先验信息的GS研究提供借鉴与参考。  相似文献   

3.
鲍晶晶  张莉 《中国畜牧兽医》2020,47(10):3297-3304
畜禽的选种选育在生产中至关重要,育种值估计是选种选育的核心。基因组选择(genomic selection,GS)是利用全基因组范围内的高密度标记估计个体基因组育种值的一种新型分子育种方法,目前已在牛、猪、鸡等畜禽育种中得到应用并取得了良好的效果。该方法可实现畜禽育种早期选择,降低测定费用,缩短世代间隔,提高育种值估计准确性,加快遗传进展。基因组选择主要是通过参考群体中每个个体的表型性状信息和单核苷酸多态性(single nucleotide polymorphism,SNP)基因型估计出每个SNP的效应值,然后测定候选群体中每个个体的SNP基因型,计算候选个体的基因组育种值,根据基因组育种值的高低对候选群体进行合理的选择。随着基因分型技术快速发展和检测成本不断降低,以及基因组选择方法不断优化,基因组选择已成为畜禽选种选育的重要手段。作者对一些常用的基因组选择方法进行了综述,比较了不同方法之间的差异,分析了基因组选择存在的问题与挑战,并展望了其在畜禽育种中的应用前景。  相似文献   

4.
基因组选择(Genomic selection, GS)技术在肉兔上的研究和应用都还显著落后于其他畜禽。为探究基因组选择在肉兔育种上的实际应用,研究以363只肉兔的84日龄体重为试验材料,结合全基因组范围内的87 704个SNPs标记,构建线性混合模型;利用基因组最佳线性无偏预测(GBLUP)方法估计个体的基因组育种值,并采用5倍交叉验证法分析估计的准确性。结果表明:基因组估计育种值准确性最高为0.23,最低为0.01,平均值为0.12。该研究结果为在肉兔中开展基因组选择提供了参考。  相似文献   

5.
全基因组选择(Genomic selection,GS),即全基因组范围内的标记辅助选择(marker-assisted selection,MAS)。因其具有可缩短世代间隔,提高年遗传进展;早期选择准确率高;同时还能提高低遗传力、难以测量性状选择效率等诸多优点,目前已成为动物遗传育种领域的研究热点。文内围绕"什么是GS"、"为什么选用GS"以及"影响GS的因素"这3个方面全方位诠释了GS。重点阐述了GS在猪育种中的应用现状,并结合GS在奶牛上的成功应用,简述了GS在猪育种上的展望。  相似文献   

6.
基因组选择(Genomic selection,GS)是新一代畜禽遗传评估方法,具有早期选择准确率高、可缩短世代间隔、对于低遗传力性状以及难以测量或测量费用较高的性状选择效率高等优点,目前已经广泛应用于奶牛育种中。本文综述了基因组选择方法在家禽中的研究进展,并对我国家禽实施基因组选择方法进行展望。  相似文献   

7.
基因组选择(genomic selection,GS)已经作为新一代畜禽遗传评估方法应用于奶牛育种中,并取得了显著成效。随着羊参考基因组的不断完善,以及不同密度SNP芯片的推出和商业化推广,新西兰、澳大利亚、法国等相继将基因组选择应用到羊育种中,揭开了羊育种的新时代。本研究总结了国内外羊基因组选择的研究现状、影响因素、优势以及存在问题和展望,以期为中国羊开展基因组选择育种提供参考。  相似文献   

8.
全基因组选择(Genomic selection,GS)是一种全基因组范围内的标记辅助选择方法。利用全基因组遗传标记信息对个体进行遗传评估,能够更加准确地早期预测估计育种值,降低近交系数,大大提高猪育种的遗传进展。随着猪全基因组测序的完成和猪60kSNP芯片的商业化,全基因组选择已经成为猪育种研究领域的新热点。本文综述了全基因组选择的分析方法、计算方法和影响因素,并阐述了全基因组选择在猪育种中的应用情况和发展趋势。  相似文献   

9.
基因组选择(GS)是全基因组范围内的分子标记辅助选择,目前被证明是利用DNA标记信息改善复杂性状最有效的方法。本文简要概述了基因辅助选择以及标记辅助选择;重点介绍了GS,包括GS的实施策略与育种值估计方法,GS的准确性获得以及对GS方法的比较,总结了当前家畜上利用GS加速遗传改良的应用进展;并对家畜在GS上的应用前景进行展望。  相似文献   

10.
基因组选择是当前畜禽育种领域一项热门的分子育种方法,已经在实际育种中得到应用并取得良好的效果。基因组选择使用数学模型计算出覆盖全基因组范围内的高密度标记的效应值,从而得到个体基因组估计育种值,再进行高效的选种选配工作。该方法可以提高传统育种值估计的准确性,实现畜禽育种早期选择,缩短世代间隔,从而加快遗传进展。同时,随着第二代测序平台和基因芯片技术不断成熟,单核苷酸多态性(Single nucleotide polymorphism,SNP)标记已成为普遍且重要的动植物研究手段,SNP芯片检测成本也不再高昂。文章综述了常见的基因组选择模型及其在家禽育种中的应用,讨论了其面临的挑战,并且展望了其应用前景,为我国地方家禽保护、评价和利用提供参考。  相似文献   

11.
数量性状是羊育种中的重要性状,受微效多基因控制、遗传力低,而传统育种方法难以提高羊的育种效率。提高动物育种效率对于选种选配工作和经济生产效益至关重要。随着育种新技术的不断革新与发展,基因组选择(genomic selection, GS)方法已成为育种技术中强大的工具,且已成功运用于个体经济价值较大的物种中,其具有缩短世代间隔、提高育种准确性、减少生产成本、提高畜禽经济效益等优势。近年来,由于基因组技术的不断成熟和各个统计模型的升级优化,以及高密度SNP芯片价格的下调,报告有关于基因组选择育种的实证和模拟研究层出不穷,且基因组选择技术已在羊育种中逐步开展,特别是在羊的重要性状中已有不少报道。由于羊的品种较多,地方性状差异化较大,个体经济价值略低,尽管基因组育种的新技术已经非常成熟,但目前仍没有在羊育种中大范围普及。为了更全面地了解该技术在羊育种中的研究现状,且基于选种选配的重要地位,作者就基因组选择在羊育种中的研究进展展开综述,主要从表型测定、基因分型、不同模型方面介绍了基因组选择在羊的重要性状中的应用和现状,讨论了其优势与挑战,并展望了基因组选择的未来发展方向。  相似文献   

12.
Selection and breeding are very important in production of livestock and poultry,and breeding value estimation is the core of selection and breeding.Genomic selection (GS) is a novel molecular breeding method to estimate genomic breeding value using high-density markers across the whole genome.At present,GS has been successfully applied in cattle,pig,chicken and so on,and made significant progress.This method can achieve early selection,decrease the testing costs,shorten generation interval,improve the accuracy of breeding value estimation and accelerate genomic progress.GS estimates the effect of SNP by phenotype information and SNP genotype of each individual in the reference population,and measures the SNP genotype to calculate the genomic estimated breeding value in the candidate population,then selects the best individuals according to the genomic estimated breeding value.With the rapid development of genotyping technology and the decrease of detection cost,and the continuous optimization and high efficiency of genomic selection methods,genomic selection has become an important research method in the selection and breeding of livestock and poultry.The authors reviewed some of the widely used genomic selection methods,compared the differences between different methods,analyzed the problems and challenges of genomic selection,and looked forward to its application prospects in breeding.  相似文献   

13.
基因组选择在我国种猪育种中应用的探讨   总被引:5,自引:0,他引:5  
种猪育种对我国养猪业起着极其重要的作用。基因组选择在我国猪育种生产中的应用水平尚不及欧美发达国家的种猪企业。完整的性能记录、高效的数据系统和资金投入的缺乏是制约基因组选择在我国猪育种生产中应用的重要因素。基因组选择能够增加不同性状遗传评估的育种值准确性,尤其是增加低遗传力性状的准确性。基因组选择在杂交优势、选配和多品种评估方面均具有应用优势。我国种猪企业需要进一步完善表型和性能数据的收集,制定长期的育种规划。通过区域性的联合评估和基因组选择技术的应用,加速群体的遗传进展,加速提升我国商品猪的生产性能。  相似文献   

14.
种公牛的选育是肉牛育种工作的核心。传统选育肉用种公牛需要经过后裔测定进行选择,其优点是准确性高,但存在周期长、屠宰和肉质性状难以收集、成本高等问题,致其选择效率低。自2001年全基因组选择概念提出后,该技术迅速成为动植物育种领域研究的热点。利用全基因组选择进行肉用种公牛的选育,进行早期选择从而大幅度缩短世代间隔,可以提高繁殖性状等低遗传力性状的选择准确性,加快遗传进展,并大大降低育种成本。2014年,美国安格斯协会开始应用全基因组选择技术,其他欧美发达国家也陆续使用,肉牛育种进入基因组时代。中国自2017年开始使用全基因组选择技术选择青年肉用种公牛,并于2020年在全国范围内使用该技术进行基因组遗传评估。本文综述了国内外肉牛遗传评估现状,以期为我国肉牛育种工作提供参考和借鉴。  相似文献   

15.
Benefits of genomic selection (GS) in livestock breeding operations are well known particularly where traits are sex‐limited, hard to measure, have a low heritability and/or measured later in life. Sheep and beef breeders have a higher cost:benefit ratio for GS compared to dairy. Therefore, strategies for genotyping selection candidates should be explored to maximize the economic benefit of GS. The aim of the paper was to investigate, via simulation, the additional genetic gain achieved by selecting proportions of male selection candidates to be genotyped via truncation selection. A two‐trait selection index was used that contained an easy and early‐in‐life measurement (such as post‐weaning weight) as well as a hard‐to‐measure trait (such as intra‐muscular fat). We also evaluated the optimal proportion of female selection candidates to be genotyped in breeding programmes using natural mating and/or artificial insemination (NatAI), multiple ovulation and embryo transfer (MOET) or juvenile in vitro fertilization and embryo transfer (JIVET). The final aim of the project was to investigate the total dollars spent to increase the genetic merit by one genetic standard deviation (SD) using GS and/or reproductive technologies. For NatAI and MOET breeding programmes, females were selected to have progeny by 2 years of age, while 1‐month‐old females were required for JIVET. Genomic testing the top 20% of male selection candidates achieved 80% of the maximum benefit from GS when selection of male candidates prior to genomic testing had an accuracy of 0.36, while 54% needed to be tested to get the same benefit when the prior selection accuracy was 0.11. To achieve 80% of the maximum benefit in female, selection required 66%, 47% and 56% of female selection candidates to be genotyped in NatAI, MOET and JIVET breeding programmes, respectively. While JIVET and MOET breeding programmes achieved the highest annual genetic gain, genotyping male selection candidates provides the most economical way to increase rates of genetic gain facilitated by genomic testing.  相似文献   

16.
Genomic selection   总被引:2,自引:0,他引:2  
Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used so that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one marker. This approach has become feasible thanks to the large number of single nucleotide polymorphisms (SNP) discovered by genome sequencing and new methods to efficiently genotype large number of SNP. Simulation results and limited experimental results suggest that breeding values can be predicted with high accuracy using genetic markers alone but more validation is required especially in samples of the population different from that in which the effect of the markers was estimated. The ideal method to estimate the breeding value from genomic data is to calculate the conditional mean of the breeding value given the genotype of the animal at each QTL. This conditional mean can only be calculated by using a prior distribution of QTL effects so this should be part of the research carried out to implement genomic selection. In practice, this method of estimating breeding values is approximated by using the marker genotypes instead of the QTL genotypes but the ideal method is likely to be approached more closely as more sequence and SNP data is obtained. Implementation of genomic selection is likely to have major implications for genetic evaluation systems and for genetic improvement programmes generally and these are discussed.  相似文献   

17.
基因组选择(GS)是近些年发展起来的一项新型育种技术,目前已在动植物育种实践中应用。本研究通过在1 068头杜洛克公猪群体中使用不同密度的SNP芯片进行全基因组选择效果比较分析。结果发现:使用基因型填充后芯片以及高密度SNP芯片所获得的估计基因组育种值(GEBV)之间可以达到99%的相关,并发现个体间亲缘关系的远近对同群体内基因型填充结果的准确率影响不大。由此可见,与目标性状紧密相关的低密度SNP芯片可用于实际育种工作,在降低使用成本的同时并不影响全基因组选择效果,为实质性进行猪分子育种提供了一条可行途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号