首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an urgent need to test and develop sustainable methods for management of soil pathogens, such as the root-lesion nematode Pratylenchus penetrans and the soil fungus Verticillium dahliae. Ultimately this should be investigated with a multidisciplinary approach, with long-term measurements of biological and chemical parameters and their final impact on crop yield under field conditions. The present study focusses on eight soil health treatments (compost, chitin, marigold, grass–clover, biofumigation, anearobic soil disinfestation, a physical control method and a combination of marigold, compost and chitin) and two control treatments (a chemical control with 300 L/ha Metam sodium and un untreated control). These 10 treatments were studied for their effects on soil chemical quality, soil pathogens and their impact on the yield of potato, lily and carrots during 6 years. The present study did demonstrate that in comparison to chemical control, additions of chitin, anaerobic soil disinfestation and marigold are already excellent alternatives for the control of plant-parasitic nematodes and V. dahliae. We also demonstrated that grass–clover, biofumigation, Cultivit and compost are not effective alternatives for chemical control yet and further development is needed. All treatments caused a yield increase in comparison with the control. The biggest increases of more than 60% were found for the treatments with chitin. Furthermore it was demonstrated that these yield increases were probably less influenced by changes in chemical soil properties, but the consequence of changes in the soil biota, in this case especially the effective control of P. penetrans and V. dahliae. Furthermore it has been demonstrated that most of these soil health treatments could already be implemented in an arable crop rotation and probably adapted for many areas of the world where other alternatives, such as solarisation or soil flooding, are not feasible or too risky.  相似文献   

2.
Crop rotation and the maintenance of plant residues over the soil can increase soil water storage capacity. Root access to water and nutrients depends on soil physical characteristics that may be expressed in the Least Limiting Water Range (LLWR) concept. In this work, the effects of crop rotation and chiselling on the soil LLWR to a depth of 0.1 m and crop yields under no‐till were studied on a tropical Alfisol in São Paulo state, Brazil, for 3 yr. Soybean and corn were grown in the summer in rotation with pearl millet (Pennisetum glaucum, Linneu, cv. ADR 300), grain sorghum (Sorghum bicolor, L., Moench), congo grass (Brachiaria ruziziensis, Germain et Evrard) and castor bean (Ricinus comunis, Linneu) during fall/winter and spring, under no‐till or chiselling. The LLWR was determined right after the desiccation of the cover crops and before soybean planting. Soil physico‐hydraulic conditions were improved in the uppermost soil layers by crop rotations under zero tillage, without initial chiselling, from the second year and on, resulting in soil quality similar to that obtained with chiselling. In seasons without severe water shortage, crop yields were not limited by soil compaction, however, in a drier season, the rotation with congo grass alone or intercropped with castor resulted in the greatest cover crop dry matter yield. Soybean yields did not respond to modifications in the LLWR.  相似文献   

3.
Abstract. Flooding of abandoned coal mines often causes discharges of iron-rich drainage water into the environment. Treatment of these discharges results in the formation of ochre (hydrous iron oxides) for which no end-use has been identified. Ochre effectively adsorbs phosphate from solution and thus could be used for remediation of waste waters. The resulting P-enriched ochre could then potentially be recycled as a P fertilizer. Pot and field experiments were set up to assess performance and environmental acceptability of ochre in this role, using grass and barley as test crops, as well as birch and spruce tree seedlings. Soils and plant materials were analysed for total and available P, total metals and pH. Results showed that P-saturated ochre functioned as a slow-release P fertilizer, and in the short term was as effective as conventional P fertilizer in maintaining crop yields. It also raised soil pH, and did not pose any significant problem through introduction of potentially toxic trace metals into the soil.  相似文献   

4.
Application of compost to cropland potentially can use large quantities of compost and serve as an alternative to waste disposal into landfills. This study was conducted to evaluate the suitability of field-applied composts of mixed municipal solid wastes, biosolids, leaves, and agricultural wastes for production of wildflower and grass sods. The composts were applied one inch thick on the soil surface. In half the plots, the composts were left on the surface as a mulch and in the other half, composts were worked into the top two inches of soil. The effects of the composts on wildflower, grass, and weed germination and growth and on wildflower diversity and flowering were investigated for two growing seasons. Wildflower and grass quality did not differ whether the composts were applied as a mulch or incorporated into the soil. In the first year, limited growth in apparently immature biosolids-woodchips and mixed MSW composts was attributed to high concentrations of ammonium or soluble salts. The detrimental effects of biosolids-woodchips compost which had high initial ammonium-N concentrations remained into the second season. In the first season, N from composts or fertilizers stimulated weed growth and resulted in poor crop quality. In the second season, crops had a competitive edge over the weeds, and N from the compost improved crop quality. Wildflower diversity and total amount of bloom improved as the N status of the media increased. Weed control and mature compost with readily available N and low soluble salt concentrations are required for high crop quality in the first season.  相似文献   

5.
Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha~(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha~(-1) BFC treatment,but not the 22.9-t ha~(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha~(-1) BFC after three applications, but not with 22.9 t ha~(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha~(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha~(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.  相似文献   

6.
红壤丘陵区不同种草模式的水土保持效果与生态环境效应   总被引:37,自引:3,他引:37  
研究探讨了红壤丘陵区将牧草纳入不同利用方式后的水土保持效果及对生态环境的影响。 3年的试验结果表明 :种植牧草能明显地减少径流量和泥沙量 ,截留雨水 ,提高土壤水分含量 ,降低高温干旱期地表温度 ,提高土壤有机质含量 ,培肥土壤。然而 ,梯田果园区种植暖季型禾本科牧草将在高温干旱期影响果树生长 ,果园牧草应以根系浅的豆科牧草罗顿豆或夏季枯死的冷季型牧草为主。在梯田作物区的梯边上种植牧草不仅没有产生明显的水土保持效果 ,而且引起牧草和作物竞争而减产 ,因而不宜提倡。  相似文献   

7.
This paper investigates effects of cropping abandonment and perennial grass growing on soil organic C and N pools and aggregate stability, by comparing soils under native grassland, crop cultivation, perennial grass growing and cropping abandonment, in degraded cropland at a sub‐alpine site in north‐western China. The pools of total and particulate organic C (115 and 37 Mg ha−1) in the 0–30 cm soil layer of native grassland were reduced by 31 and 54% after 30 years of crop cultivation. After 4 years of conversion from cropland to perennial grass growing total and particulate organic C pools were increased by 29 and 56%, whereas 4 year cropping abandonment increased particulate organic C by 36%. Rapid increases in total and particulate N were also found in perennial grass growing and cropping abandonment soils. The native grassland soil and soils of cropping abandonment and perennial grass growing had higher carbohydrate C concentrations in the 0–10 cm layer than the cropped soil. The rapid recovery of particulate organic fraction and carbohydrates in the re‐vegetated soils were probably due to higher plant biomass inputs and lower organic matter decomposition compared with those in the cropped soil. Aggregate stability of the 0–30 cm soil layer was significantly decreased by crop cultivation but showed a good recovery after 4 year re‐vegetations. This study suggests that reduction of soil organic matter and aggregate stability under crop cultivation may be remedied by cropping abandonment or perennial grass growing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《Applied soil ecology》2009,41(3):432-446
Insight is needed into how management influences soil biota when sustainable grassland systems are developed. A crop rotation of grass and maize can be sustainable in terms of efficient nutrient use. However, there is lack of information on the effect of such a crop rotation on soil biological quality. Earthworms, nematodes, bacteria and fungi were sampled over three years in a 36 years old experiment. Permanent arable land was compared with permanent grassland and with a ley-arable crop rotation. In the rotation, a period of three years of grassland (temporary grassland) was followed by a period of three years of arable land (temporary arable land) and vice versa. In the first year of arable cropping in the rotation, the number of earthworms was already low and not different from continuous cropping. In the three-year grass ley, the abundance of earthworms returned to the level of permanent grassland in the second year. However, the restoration of earthworm biomass took a minimum of three years. Furthermore, the anecic species did not recover the dominance they had in the permanent grassland. The numbers of herbivorous and microbivorous nematodes in the ley-crop rotation reached similar levels to those in the permanent treatments within one to two years. Although the same holds for the nematode genera composition, the Maturity Index and the proportion of omnivorous nematodes in the temporary treatments remained significantly lower than in their permanent counterparts. Differences in recovery were also found among microbial parameters. In the temporary treatments, bacterial growth rate and the capacity to degrade a suite of substrates recovered in the second year. However, the Community-Level Physiological Profiles in the permanent grassland remained different from the other treatments. Our results suggest that many functions of soil biota that are well established in permanent grassland, are restored in a ley-arable crop rotation. However, due to a reduction in certain species, specific functions of these soil biota could be reduced or lost. The ley-arable crop rotations were intermediate to permanent grassland and continuous arable land in terms of functioning of soil biota (e.g., N-mineralization). In terms of the functional aspects of the soil biota, permanent grassland might be preferable wherever possible. For maize cultivation, a ley-arable crop rotation is preferable to continuous arable land. However, a ley-arable crop rotation is only preferable to continuous arable cropping if it is not practised at the expense of permanent grassland at farm level.  相似文献   

9.
新垦赤红壤结构特性的演化   总被引:4,自引:3,他引:4       下载免费PDF全文
本文探讨新垦赤红壤结构特性的变化,定位试验结果表明:在亚热带生物气候条件下垦殖赤红壤,由于耕作管理扰动土壤,将不可避免地产生土壤砂化或粉砂化现象。  相似文献   

10.
In agricultural headlands, rooting and yield of crops may be limited because of soil‐structure changes as a consequence of multiple passes of turning machinery. We hypothesized that perennial forage crops can substantially alter soil structure in agricultural headlands. On one experimental field and two commercial farms on Haplic Luvisols from respectively loess and sandy loess in the Lower Rhine Bay (Germany), we investigated how 4 y of continuously grown grass/clover or alfalfa affected soil structure and the performance of subsequent spring wheat. Compared with a crop rotation with annual plowing to 30 cm soil depth, perennial forage crops led to increased soil C content (+1.3% to +22.8%) and N content (+4.2% to +15.1%), higher densities of medium and coarse biopores at a depth of 35 cm, more large water‐stable soil macroaggregates, higher biomass and abundance of anecic earthworms, and higher grain yield and grain protein content of spring wheat grown as the following crop. Root‐length density of spring wheat in the subsoil was not affected by the preceding perennial fodder crops in two of the three field trials. We concluded that besides increasing N input to the soil, perennial cropping of grass/clover or alfalfa has effects on soil structure that may substantially reduce yield losses in agricultural headlands.  相似文献   

11.
黄土旱塬塬面生态系统土壤硝酸盐累积分布特征   总被引:9,自引:5,他引:9  
研究了渭北旱塬塬面不同土地利用方式下土壤剖面硝酸盐含量与分布特征,并与长期田间定位试验结果进行对比分析。结果表明,地表有植物生长与氮肥投入显著影响土壤剖面硝态氮含量与分布。土壤0-400.cm硝态氮累积含量顺序是:苹果园高产粮田裸地刺槐林地荒草地人工草地。苹果园土壤剖面硝态氮在深层累积严重,累积层在80-160.cm,最高含量达201.9.mg/kg。高产农田也发生了硝态氮的淋溶累积,累积峰出现在120-140cm土层,最高含量为44.1.mg/kg。林草地因为没有氮肥投入,剖面硝态氮含量处于很低水平。由于塬面土地大部分为高产农田与苹果园,土壤中累积的大量硝态氮既浪费了资源又可能对环境造成潜在的威胁,建议降低氮肥用量,特别是果园,并建议对大量施用化肥对区域生态环境与苹果品质的影响进行研究。  相似文献   

12.
Chiselling has been used to alleviate soil compaction but cover crops with deep, vigorous roots can improve root growth and activity of the cash crop for a longer time. The determination of root activity in addition to root mass or length may improve the understanding of plant response to compaction. The objective of this experiment was to evaluate root growth and activity as affected by the alleviation of soil compaction using mechanical and biological methods. The experiment was conducted in Botucatu, São Paulo, Brazil, from 2009 to 2011, on a clay, Typic Rhodudalf soil. Crop rotations including pear millet (Pennisetum glaucum), soybean (Glycine max), grain sorghum (Sorghum bicolor), maize (Zea mays), ruzi grass (Brachiaria ruziziensis) and castor bean (Ricinus communis) in plots, either chiselled or not. Root growth was assessed by core sampling and root activity was determined indirectly using rubidium injected at several depths as a marker. Root activity was instrumental in interpreting the effects of tillage and crop rotations on soil amelioration. Compared with the initial compacted condition, chiselling increased root growth and activity just for the first 18 months of the experiment, but crop rotations, mainly including ruzi grass and castor bean, increased root growth and activity in the soil profile from the second year on. Generally, root mass was poorly correlated with root activity, except in the case of ruzi grass. Introduction of ruzi grass plus castor bean into the cropping system improves not only root growth and activity in the soil profile but also soybean yield.  相似文献   

13.
ABSTRACT

Conservation agriculture (CA) as recommended by the Food and Agriculture Organization of the United Nations consists of three components: minimum soil disturbance, soil cover, and crop rotation/association. CA was expected to become an effective countermeasure against water erosion in the Sudan Savanna, but it has not been adopted by local smallholder farmers. As markets for grain legumes (including cowpea) have not been developed in the Sudan Savanna, crop rotation/association should be considered impractical for these farmers. Therefore, we examined whether legume intercropping as a crop rotation/association component is necessary for preventing soil erosion in the Sudan Savanna. Three-year field experiments were conducted in runoff plots at Institute of Environment and Agricultural Research Saria station. The four treatments were conventional practice (full tillage, no sorghum residue mulching, and no intercropping), two-component CA (minimum tillage (MT) and sorghum residue mulching without intercropping), and three-component CA with velvet bean (VB) or pigeon pea (PP) intercropping. It was revealed that: (1) MT and sorghum residue mulching (without intercropping) effectively reduced the annual soil loss by 54% mainly due to the improvement of soil permeability by the boring of termites and wolf spiders found under the sorghum stover mulch; (2) intercropping in combination with MT and crop residue mulching had no effect on soil erosion control mainly because: (a) PP did not survive the long dry season; (b) VB did not serve effectively as a cover crop since soil loss was concentrated at the beginning of the rainy season when VB was still too small; (c) unexpectedly, in combination with MT and crop residue mulching, intercropping with VB did not increase mulch biomass, especially sorghum biomass which prompts the boring of termites and wolf spiders. These results demonstrate that the third component of CA, namely legume intercropping, is not always necessary; rather, the two remaining components – minimum soil disturbance and soil cover – are sufficient for soil conservation in the Sudan Savanna. This finding lightens the burden of adopting CA and thus facilitates its future promotion to the smallholder farmers in the Sudan Savanna.  相似文献   

14.
Abstract. Eleven precipitated phosphates were evaluated as sources of phosphorus (P) for plant growth by comparing their effectiveness with that of monocalcium phosphate, a source of water soluble P that is generally considered to be fully plant available. The precipitated phosphates comprised struvites recovered from waste water discharges (mainly magnesium ammonium phosphate), laboratory synthesised struvites, a synthetic iron phosphate and a recovered calcium phosphate. Precipitating phosphates in these forms could be a way for removing P from waste water before it is discharged to rivers, so reducing the risk of eutrophication. Application to agricultural land would be one potential use for such phosphates. Evaluation was by pot experiments with a sandy loam soil and with a sandy clay loam soil using perennial ryegrass ( Lolium perenne) as the test crop. The soils differed in pH (6.6 and 7.1) and in Olsen P (28 and 11 mg L−1). Measured variables were grass dry matter (DM) yield and grass P concentration which were used to calculate offtake of P in the harvested grass. DM yields of ryegrass and P offtakes given by the synthetic and recovered struvites were not significantly different statistically either between themselves or to MCP applied at the same rate. On this basis these struvites could be used to recycle P to similar soils and the effect of the P on crop yield should be similar to that of MCP  相似文献   

15.
Structure of a silty soil in relation to management   总被引:3,自引:0,他引:3  
In the United Kingdom silty soils have been classified as unsuitable for direct drilling since these soils may produce seed-beds that are inadequate for satisfactory crop emergence. This judgement was based on problems encountered in the first 2–3 yr of direct drilling as well as on an appreciation of soil physical properties. Longer-term experimentation (10 yr) has indicated that, subsequent to that initial period, soil conditions after zero-tillage are not a major limitation to growth of autumn-sown cereals. This eventual parity between simplified and conventional tillage can be attributed largely to improvement in the surface of direct-drilled land. In the tenth experimental year this layer comprised more strongly developed aggregates, of greater stability, than those from the annually ploughed soil. Porosity and soil strength measurements did not indicate that root growth would be severely restricted below this depth. When this soil was wet in winter it was weak and relatively unstable and so it would most likely be unsuitable for sequential direct drilling of spring-sown crops. At the same site soil that had been continuously under grass throughout the same 10 yr period developed better structure than that in the arable area, in part because of a greater earthworm population and an increased organic matter accumulation. In any subsequent change to arable usage this improved structure would best be conserved by avoiding soil inversion and using direct drilling or some other simplified method of cultivation.  相似文献   

16.
Cover crop and nitrogen(N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon(C)(SOC), total N(STN), ammonium N(NH_4-N), and nitrate N(NO_3-N) contents at the0–5, 5–15, and 15–30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane(Saccharum spontaneum L.) or elephant grass(Pennisetum purpureum Schumach.), cover crop, crimson clover(Trifolium incarnatum L.), and N fertilization rates(0, 100, and 200 kg N ha~(-1)). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1) than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0–5 and 5–15 cm were 9%–20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha~(-1)than in most of the other treatments. The soil NO_3-N content at 0–5 cm was 31%–45% greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1)than in most of the other treatments.The SOC sequestration increased from 0.1 to 1.0 Mg C ha~(-1)year~(-1)and the STN sequestration from 0.03 to 0.11 Mg N ha~(-1)year~(-1)from 2010 to 2014 for various treatments and depths. In contrast, the soil NH_4-N and NO_3-N contents varied among treatments,depths, and years. Soil C and N storages can be enriched and residual NO_3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.  相似文献   

17.
Soil conservation measures such as establishing grass barriers or cover crops effectively control erosion but also provoke competition, which reduces yields of companion crops. We used 13C and 15N natural abundance profiles to identify the causes of competition of soil conservation measures on a field with 59% slope in Northwest Vietnam three years after establishment. Treatments were maize under farmer’s practice (T1, control), maize with Guinea grass barriers (T2), maize under minimum tillage (MT) with Pinto peanuts as cover crop (T3), and maize under MT and relay cropped with Adzuki beans (T4). A pretest using data from zero-N plots revealed that abundance of water and limited nitrogen availability induced low grain N concentrations, enriched leaf δ13C, and reduced maize grain yield. Similar low N leaf concentrations and elevated δ13C values were observed in maize growing close to frequently pruned grass barriers under positive water balance conditions, indicating that yield decline in these rows can be attributed mainly to N competition. Enriched δ15N values of maize from rows next to barriers indicated reliance on soil N rather than on 15N-depleted fertiliser N. Vigorous cover crop growth under MT resulted in maize yield decline due to N competition while relay-cropped legumes did not trigger inter-species competition having a similar maize yield, leaf N concentration, δ13C, and δ15N as the control.  相似文献   

18.
为探明以复合型人造土壤为边坡种植土的植物蒸散对于高陡边坡生态恢复评价体系制定及水资源利用的重要意义,以黑麦草、高羊茅、早熟禾和"黑麦草+高羊茅+早熟禾"混合草种为研究对象,采用壤中滴灌技术,通过改进后的Penman-Monteith公式研究草本植物实际蒸散量与作物系数,以此评价壤中滴灌技术的生态效益。结果表明:高羊茅的作物实际蒸散量和作物系数最大,黑麦草其次,早熟禾最小,拟合的决定系数不小于0.847;养护初期各植物蒸散量相差较小,均保持在4.2 mm/d左右;养护结束后混合草种的蒸散量最大,早熟禾最小,分别约6.2、5.7 mm/d;养护前20 d,除早熟禾外,黑麦草、高羊茅、混合草种实际蒸散量均差异不显著,养护20 d后黑麦草、早熟禾、混合草种开始发生显著变化;30 d后各草种蒸散量均差异不显著;4类草本植物蒸散量差值随时间递增,前期混合草种蒸散量低于黑麦草、高羊茅,后期有明显的提升,50 d起混合草种作物系数大于单草种作物系数。以30 d为界,30 d作物系数相近;生长初期的作物系数变幅最明显,且月增幅随时间呈下降趋势,但黑麦草和高羊茅的作物系数在任意时段均相近。边坡模型试验前期,以坡面喷灌方式灌溉的植物生态值较高,植物生长情况优于壤中滴灌方式,但自养护中期开始,壤中滴灌技术在生态效益上凸显优势,比坡面喷灌技术高出40.7%~1 444.0%的生态值。  相似文献   

19.
Abstract. In organic farming systems, fertilizing materials can be used when potassium (K) deficiency is shown, but such systems are dominantly nitrogen (N) limited and this is likely to affect crop utilization of K. The supply of K to grass/clover from a range of mineral and organically based K fertilizers and its interaction with N supply were studied in a greenhouse experiment. Sequential plant cuts were taken for yield and nutrient content determinations in crop and soil. Crop yields were limited by N: where N supply was increased either through the mineralization of N from organic materials (rapemeal, farmyard manure) or inorganic fertilizer, plant yields increased significantly. Grass/clover responded better to additional K where sufficient N was available. However, yield responses to K were generally small, even in the presence of adequate N. Of the different fertilizers, kali and MSL-K increased yields above those of the control by less than 5%, sylvinite, DKSI and farmyard manure by 10–20%, and rapemeal and potassium sulphate by more than 25%. In all treatments, K offtakes in the grass/clover were considerably greater than fertilizer K inputs. The grass/clover showed an increased uptake of Na where insufficient K was available. However, the Mg content of the grass/clover was not adversely affected by K fertilizer application. Organic farmers need to consider the soil K status, the rotational nutrient budget, the supply of all nutrients in fertilizing materials and nutrient interactions to achieve effective K management in organic farming systems.  相似文献   

20.
Application of biochar to agricultural soils is effective to sequester atmospheric carbon and improve soil quality, but current pyrolysis and transportation costs are high, making biochar too costly to be used at the field scale. This study developed a new in-situ technique, burning and soil covering(B-SC), which can be used by farmers for production of biochar with crop residue. In this study,the air-dried feedstocks, elephant grass and corn residue, were burnt in situ for biochar production in the field. After approximately 90% of the leaves were combusted, the burning process was dramatically slowed down by covering the feedstock with soil. The biochar yield averaged 18.0 ± 1.3(n = 15) and 13.7 ± 1.3(n = 10) kg per 100 kg air-dried feedstock for the elephant grass and corn residue,respectively. The biochar properties were suitable for soil improvement. The inputs for biochar production of the B-SC process only included low labor force, open field, feedstock(e.g., grass and crop residue), and simple tools. The operation time for processing 10 kg of the corn residue by an individual farmer was 24.4 ± 4.1 min(n = 10). As compared with the conventional field burning process, the B-SC process drastically shortened the time for biomass burning and generated a significantly lower emission of smoke and thermal energy. This simple technique can be particularly practical and effective for farmers to improve the soils of poor quality in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号