共查询到17条相似文献,搜索用时 65 毫秒
1.
利用与大豆灰斑病抗性基因连锁的SSR标记构建品种(系)的分子身份证 总被引:2,自引:0,他引:2
以黑龙江省29个大豆育种单位的103份已鉴定大豆灰斑病3个生理小种抗性的大豆品种(系)为材料,选择与大豆灰斑病抗病基因连锁的19个SSR标记检测,获得等位变异数86个,每个标记检测到的等位变异数分布在2~6个之间,平均为4.42个。应用遗传统计软件(genetics statistics 3.0)分析表明, 标记的多样性指数介于0.198~0.751之间,平均多样性指数为0.606。品种(系)特异指数差异较大,介于46.592~481.541之间,平均为87.415。根据标记的等位基因数,使用ID Analysis 1.0软件分析表明,利用与大豆抗灰斑病基因连锁的7个SSR标记(Satt565、Satt547、Satt431、Sct_186、SOYGPATR、Satt244、Sat_151)就能有效区分各品种(系),因此利用这7个标记构建了供试品种(系)的分子身份证。 相似文献
3.
142份甜高粱品种的分子身份证构建 总被引:5,自引:0,他引:5
从分布在高粱染色体10个连锁群上的103对SSR引物中,筛选出41对多态性引物, 并用其扩增国内外142份甜高粱种质资源, 检测到189个多态性片段, 每对引物的等位基因数在2~11之间,平均为4.6个。引物位点的多态信息含量指数(PIC)变幅为0.089~0.850,平均为0.543。品种间特异指数差异较大,介于109.1~454.7之间,平均为189.0。结果表明, 根据引物的等位基因数确定11对引物(Xtxp329、Xtxp258、Xtxp113、Xtxp303、Xtxp61、Xtxp201、Xtxp14、Xtxp91、Xtxp47、Xtxp217和Xtxp67)组合, 并用于构建142份品种资源的分子身份证, 有效地区分了各品种。 相似文献
4.
为分析黑龙江地区28株野生黑木耳菌株的遗传多样性,并构建种质分子身份证。利用SSR分子标记对供试菌种进行遗传多样性分析,用NTSYS软件进行聚类分析并用ID Analysis 1.0软件种质分子身份证。结果表明:7对引物共检测到131个多态性片段,品种间特异性指数介于23.015~53.827之间,平均为30.00;在相似水平在0.58时,28个供试黑木耳菌株被分为3个组群。结果仅需5对引物即可将28份参试菌株完全区分开。 相似文献
5.
为科学准确的鉴别谷子种质资源,加强对谷子种质资源管理和新品种保护。筛选出33对SSR标记对94份谷子种质资源进行了分子身份证的构建。从分布在谷子9条染色体上的500多对SSR标记中,筛选出33对多态性标记扩增国内外94份谷子种质资源,检测到203个多态性片段,每对标记的等位基因数为3~10,平均为6.2个。标记位点的多态信息含量(PIC)变幅为0.429~0.864,平均为0.740。品种间特异指数差异较大,为63.336~268.523,平均为189.000。结果表明,根据标记的等位基因数确定10对分子标记b185、b260、b224、b103、b225、CAAS1044、b186、b253、b105、CAAS3008组合,即可将94份核心种质资源完全区分开。 相似文献
6.
大豆品种成熟期基因型推测的研究 总被引:1,自引:0,他引:1
选择不同来源中国大豆品种23份和国外引进的成熟期近等基因系35份进行SSR分析,目的是鉴定与成熟期基因型紧密连锁的标记,进而推测中国大豆品种的成熟期基因型。结果表明,(1)210对SSR标记中125对在成熟期近等基因型中具有多态性,推测与成熟期有关的标记有8个;(2)在Clark近等基因系中,筛选出成熟期基因E3/e3特异性标记Satt229,E4/e4的特异SSR标记Sct_010、Satt294、Satt247、Satt452和Satt156;在Clark和Harosoy近等基因系中,筛选出E7/e7的特异性SSR标记为Satt071、Satt178;(3)根据8个与成熟期相关的标记的分子数据,构建了国外大豆近等基因系的UPGMA聚类图,共聚为4类,背景来源相同或相似的材料被聚为一类,明显分为Clark近等基因系和Harosoy近等基因系。(4)与近等基因系成熟期基因(E7)分子标记比对,推测出25份中国大豆品种的成熟期基因。 相似文献
7.
构建并研究应用核心种质是深入挖掘芝麻优异基因和提高育种效率的有效途径。经过对核心种质农艺、形态等性状4年4点的观察统计, 构建了包括大粒、高木酚素、高油等23种应用型在内的131份芝麻应用核心种质。为了准确鉴别这批应用核心种质并对芝麻DNA分子身份证的构建方法进行探索, 本研究利用SSR变性聚丙烯酰胺凝胶电泳技术, 从基于芝麻全基因组开发的32对SSR引物中, 筛选出7对核心引物, 进而采用SSR荧光标记毛细管电泳技术, 共检测出53个多态性位点, 最多一个引物检测到12个多态性位点。将毛细管电泳得到的分子量数据以数字+英文字母方式编码, 用ID Analysis 4.0软件根据最少引物区分最多种质的原则选核心引物中的6对(ZMM1494、ZMM1648、ZMM3037、ZMM2818、ZMM1851、ZMM1935)组合, 构建出如“4A32645(AC017)”这种简单、易使用的字符串DNA分子身份证, 并确定了不同应用型的组内引物组合。还对131份应用核心种质构建了条形码和二维码DNA分子身份证, 可迅速被电子设备识别, 拓宽了DNA分子身份证的使用范围, 并为以后芝麻种质标准化和品种DNA分子身份证库的构建奠定了重要的技术基础。 相似文献
8.
构建并研究黄麻应用核心种质是促进黄麻遗传育种和挖掘优异基因的必要途径。在300份黄麻种质资源的农艺性状观察统计基础上,构建了黄麻应用核心种质,包含61份品种(系),可划分为高产、优质、抗病等16种应用类型。为准确鉴定这61份应用核心种质,以46对核心引物为基础,筛选出12对荧光核心引物,采用荧光标记毛细管电泳分析这12对引物的多态性,共检测出140个多态性位点。将毛细管电泳得到的分子量数据以数字+英文字母方式编码,选取了12对荧光核心引物的组合,构建出该应用核心种质的字符串DNA分子身份证,进而构建了相应的条形码和二维码DNA分子身份证,可迅速被电子设备识别。这些结果可促进黄麻种质资源的高效利用及快速分子鉴定。 相似文献
9.
为了根据遗传背景快速区分和鉴定甜菜品种的真实性和特异性,补充和打破形态学鉴定法的短板和局限,以96份甜菜登记品种为试材,采用DAMD分子标记技术构建了甜菜品种的分子身份证。结果显示,有7条扩增条带清晰、多态性较好的DAMD引物可用于鉴别甜菜品种,这7条引物共检测出103条带,其中多态性条带101条,多态性98.1%;96个品种间的最小遗传距离为0.039,最大为0.485,平均遗传距离0.237。通过聚类分析,96个甜菜品种被分为两类群,类群I仅有54号品种,类群II包含其余95个品种,类群II进一步又分两个亚群。仅利用URP1F、URP17R和URP2R这3条引物组合将96个供试甜菜品种完全区分。利用DAMD引物构建甜菜品种的分子身份证,为快速、高效地鉴定甜菜品种提供了一种新的途径,也为保护育种家和农民的利益提供了保障。 相似文献
10.
为快速鉴定黍稷(Panicum miliaceum)资源,建立大数据管理平台,为种质身份标识和溯源管理提供理论依据。本研究以来源于4个生态栽培区的130份资源为材料,基于35个高基元SSR (四、五和六碱基重复各21、10和4个)构建分子身份证。结果表明, 35个标记中有30个扩增条带稳定,可用于分子身份证构建。30个标记共检出等位变异(Na)90个,平均为30个;有效等位变异(Ne)为2.3186~2.9982,平均为2.7607;Shannon多样性指数(I)为0.9158~1.0873,平均为1.0472;Nei’s基因多样性指数(Nei)为0.5687~0.6665,平均为0.6360;多态性信息含量(PIC)为0.5151~0.7898,平均为0.6966;观测杂合度(Ho)为0.5000~–0.8678,平均为0.7168;期望观测杂合度(He)为0.5710~0.6691,平均为0.6386。基于UPGMA聚类将材料划为3个类群(I、II、III),就山西省材料而言,地方品种和育成品种分别划归类群I和III,农家种在3个类群中均有分布。主成分分析将试材归为4类,聚类结果与... 相似文献
11.
小麦是青海省重要的粮食作物,本研究从分子水平上明确青海省审定小麦品种的遗传多样性现状并建立其分子身份证,为青海省小麦育种和资源保护提供理论依据。利用从520对SSR引物中筛选出的212对具有清晰扩增条带的引物,对青海省66个育成小麦品种进行研究。结果表明,19对引物扩增结果表现为单态,193对引物扩增结果表现为多态,共扩增出724个等位变异,变异范围为2~10个。多态性引物的多态信息含量(polymorphism information content,PIC)变化范围为0.03~0.86,平均为0.51。A、B、D 3个基因组的平均等位变异丰富度(allelic richness,Rs)和平均遗传多样性指数(Nei’s genetic diversity index,He)均为A>B>D。小麦的7个同源群中,第2同源群多样性指数最高,第7同源群多样性指数最低。在多样性研究的基础上,利用23对引物组合,构建了66个小麦品种的分子身份证,可将它们完全区分开,为青海省小麦品种的鉴定提供参考。 相似文献
12.
黑龙江省主栽大豆品种遗传多样性和群体结构分析 总被引:1,自引:1,他引:1
利用187对SSR标记对近25年(1992-2017)在黑龙江省栽培的202个大豆品种进行遗传多样性和群体结构分析。结果表明,从试验材料的基因组DNA中扩增出多态性位点808个,平均每对引物扩增出多态性位点4.42个;多态性位点最多的引物是satt703和satt311,均为10个;等位变异频率最高的引物是satt417和satt575,等位变异频率均为99.5%。供试品种间的遗传相似系数为0.283~0.930,平均值为0.519。同一个育种单位育成的部分品种具有较高的遗传相似性。群体结构、主坐标分析和NJ聚类将202个品种划分的结果是一致的,均为3个类群。类群中的部分材料血缘不是独立的,而是相互渗透的。 相似文献
13.
云南甘蔗自育品种DNA指纹身份证构建 总被引:14,自引:4,他引:14
以云南27份甘蔗自育品种为材料,从国际微卫星协会提供的120对SSR引物中筛选出8对多态性丰富、品种区分率高、易统计的引物组成核心引物。8对SSR引物共产生129条带,123个为多态带,多态条带比例为95.35%,多态信息量平均为0.9445,品种相似性系数在0.269~0.767之间,其中引物SMC1047HA ,MSSCIR21不仅多态性丰富,而且单个引物就可区分所有品种,是最有效的核心引物。8对核心引物两两组合的效率分析表明,MSSCIR36/MSSCIR2、MSSCIR16/MSSCIR36和MSSCIR36/SMC336BS是高效引物组合,可以完全有效区分所有品种,且品种相似性系数较低;同时使用蔗区种植面积较大的10个主栽品种验证3个高效引物组合,结果表明, MSSCIR16/MSSCIR36是最佳引物组合,不仅能有效区分所有云南自育品种,而且能将云南自育品种与10个主栽品种最有效地区分开。使用品种的国圃号、国家地区代码、育种单位英文缩写、核心引物名称和分子数据组成云南甘蔗自育品种的DNA指纹身份证,不仅包含了品种的重要信息,而且其中的分子数据可用于品种的真伪鉴定和遗传关系分析,为品种的知识产权保护提供有效的科学依据。 相似文献
14.
利用SSR方法鉴定大豆品种纯度 总被引:36,自引:0,他引:36
本研究以遗75—14,中黄14,中品662和中品661共4个品种为试验材料,利用不同连锁群上的SSR引物对其随机选择个体进行分析,以确定分析品种纯度所需的引物数,为大豆品种资源的保存及品种指纹图谱的建立提供理论依据。通过11对SSR引物对遗75—14,中黄14,中品662各10个单株的检测,发现中品662纯度最高,遗75~14次之,而中黄14的纯度最低。用SSR引物对中品661和中品662每10个单株混合样品分析并经单株检测验证,其纯度分别为99.0%和98.3%,研究结果表明,10个植株混合时,即使有一个单株为杂合位点也能被检测出来,并发现用3—5对位于不同连锁群的SSR引物可以对随机或混合样品进行快速、准确的纯度鉴定。 相似文献
15.
国家大豆区域试验品种(系) SSR位点纯合度分析 总被引:5,自引:0,他引:5
利用30对SSR引物,检测2005—2009年参加国家区域试验的1 068份大豆品种(系)的位点纯合度。每年区试品种(系)的平均纯合度为94.9%~97.6%,纯合度高于85%和90%的品种(系)所占比例分别为95%和91.4%,纯合度低于85%的品种(系)有42份(占3.93%),主要为北方春大豆和黄淮夏大豆。位点纯合度低于85%的参试品种(系)的产量比较表明,只有11份品种(系)比对照增产5%以上,20份比对照减产0.04%~13.08%;与纯合度为100%的材料比较发现,位点纯合度较低的材料在区试中产量也较低。建议国家区试品种(系)纯合度标准不低于90%,以保证审定品种的特征特性,为大豆新品种的持续推广利用提供科技支撑。 相似文献
16.
17.
秦君;李英慧;刘章雄;栾维江;闫哲;关荣霞;张孟臣;常汝镇李广敏马峙英邱丽娟 《作物学报》2009,35(2):228-238
利用22个表型性状和60个微卫星(simple sequence repeat, SSR)位点对黑龙江省140份代表性种质(78份地方品种和62份育成品种)进行分析, 根据UPGMA (unweighted pair group method with arithmetic mean)和Model-base对SSR数据进行遗传结构划分。结果表明, 参试品种可分为2大类群, 第II类群的各项多样性指标均高于第I类群, 2个类群遗传距离为0.2427;PCO结果显示这2个类群分布在不同区域, 这与地理来源和育成年代密切有关。依据品种类型分为育成品种和地方品种两组, 后者的各项多样性指标均高于前者, 两组间的遗传距离为0.1131。依据表型数据的PCO分析表明, 分布区域与品种类型有关, 与SSR结构分类的结果吻合度低, 两组品种主要在3个主成分的6个表型性状上有所不同。它们不是2个相对独立的遗传群体, 根据分子标记和表型分类各有特点;建议在种质遗传多样性研究中将分子数据和表型数据结合起来。 相似文献