首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geranial is one of the potent odor compounds in fresh ginger. To clarify the generation of geranial in ginger, the alcohol dehydrogenase activity was measured in a crude enzymatic system of ginger. This enzyme solution was found to contain geraniol dehydrogenase (GeDH) specifically acting on geraniol as a substrate with NADP as a coenzyme. Geranial generation and GeDH activity were investigated for different maturity stages and storage periods of ginger. Both were at maximum levels from just after harvesting to initial storage. The GeDH activity subsequently dropped, and the generation of geranial also stopped. These results suggest that the GeDH activity in ginger is related to the generation of geranial.  相似文献   

2.
Aroma compounds contained in the extracts of soybean and mung bean that possess antioxidant activity were identified by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major aroma constituents of soybeans were 1-octen-3-ol (13.699 ppm), maltol (1.662 ppm), phenylethyl alcohol (1.474 ppm), hexanol (1.430 ppm), and gamma-butyrolactone (1.370 ppm). The major aroma constituents of mung beans were hexanol (3.234 ppm), benzyl alcohol (2.060 ppm), gamma-butyrolactone (1.857 ppm), 2-methyl-2-propenal (1. 633 ppm), and pentanol (1.363 ppm). The major aroma chemicals of soybeans and mung beans were examined for antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol showed potent antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited the oxidation of hexanal by 100%, 93%, 84%, and 32%, respectively, for a period of 40 days at the 500 microg/mL level. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited malonaldehyde (MA) formation from cod liver oil by 91%, 78%, 78%, and 78%, respectively, at the 160 microg/mL level. The antioxidative activity of eugenol was comparable to that of the natural antioxidant alpha-tocopherol (vitamin E).  相似文献   

3.
It was previously reported that cell cultures from Lactobacillus plantarum CECT 748 (T) were able to decarboxylate phenolic acids, such as p-coumaric, m-coumaric, caffeic, ferulic, gallic, and protocatechuic acid. The p-coumaric acid decarboxylase (PDC) from this strain has been overexpressed and purified. This PDC differs at its C-terminal end when compared to the previously reported PDC from L. plantarum LPCHL2. Because the C-terminal region of PDC is involved in enzymatic activity, especially in substrate activity, it was decided to biochemically characterize the PDC from L. plantarum CECT 748 (T). Contrarily to L. plantarum LPCHL2 PDC, the recombinant PDC from L. plantarum CECT 748 (T) is a heat-labile enzyme, showing optimal activity at 22 degrees C. This PDC is able to decarboxylate exclusively the hydroxycinnamic acids p-coumaric, caffeic, and ferulic acids. Kinetic analysis showed that the enzyme has a 14-fold higher K(M) value for p-coumaric and caffeic acids than for ferulic acid. PDC catalyzes the formation of the corresponding 4-vinyl derivatives (vinylphenol and vinylguaiacol) from p-coumaric and ferulic acids, respectively, which are valuable food additives that have been approved as flavoring agents. The biochemical characteristics showed by L. plantarum PDC should be taken into account for its potential use in the food-processing industry.  相似文献   

4.
An enzyme having activity toward n-hexanol was purified from apple, and its biochemical characteristics were analyzed. The purification steps consisted of sedimentation with ammonium sulfate, DEAE Sepharose Fast Flow ion exchange chromatography, and Sephadex G-100 column. The obtained enzyme had a yield of 16.00% with a specific activity of 18879.20 U/mg protein and overall purification of 142.77-fold. The enzyme showed activity to isoamylol, 1-propanol, n-hexanol, and isobutanol but not toward methanol and ethanol. With n-hexanol as a substrate, the optimum conditions were pH 4.0 and 30 °C for enzyme activity and pH 3.0-4.0 and temperatures below 40 °C for enzyme stability. The enzyme activity was increased significantly by adding l-cysteine and Fe(2+) at all tested concentrations and slightly by Zn(2+) at a high concentration but decreased by additions of EDTA, Ga(2+), K(+), Mg(2+), sodium dodecyl sulfate (SDS), sodium aluminum sulfate (SAS), dithiothreitol (DTT), and glutathione (GSH). The enzyme activities toward n-hexanol and n-hexanal were increased by NADH but decreased by NAD(+), in contrast to a decrease toward n-hexane by addition of both NAD(+) and NADH.  相似文献   

5.
A sequential injection system was developed for the enzymatic determination of ethanol in wine. The spectrophotometric determination is based on the enzymatic reaction catalyzed by alcohol dehydrogenase in the presence of NAD+. The system was applied to the determination of ethanol in a range of 0.008-0.024% (v/v) with good repeatability; RSD(n=10) < 2.3%. The results obtained with the developed system showed good agreement with those obtained by using the reference method. The determination rate was 25 h(-1); 1 micromol of NAD+, 1.1 units of enzyme, and 50 microL of sample were consumed per determination; and the waste produced was 2.2 mL per assay.  相似文献   

6.
Results obtained in a set of experiments point to an effective participation of olive seeds in the biosynthesis of olive oil aroma through the lipoxygenase pathway during the extraction process to produce virgin olive oil. Data showed that olive seeds should contain enzymatic activities metabolizing 13-hydroperoxides other than hydroperoxide lyase, giving rise to a net decrease in the content of C6 unsaturated aldehydes during the olive oil extraction process. Olive seeds seem also to supply this process with alcohol dehydrogenase activity, being more specific for saturated C6 aldehydes and not acting on C5 alcohols. Moreover, olive seeds would be responsible for the biosynthesis of 30-50% esters during the olive oil extraction process of intact fruits. Thus, olive seeds would afford a load of alcohol acyltransferase activity that might be quite unspecific in terms of substrate, producing any kind of esters.  相似文献   

7.
Retention of six aroma compounds has been studied after dehydration of ternary mixtures of aroma water and beta-cyclodextrin. A maximal retention of a mole of aroma per mole of beta-cyclodextrin has been observed for five of the aroma compounds, whereas retention of benzyl alcohol can be twice as high. Retention of a mixture of aroma compounds has also been studied. It has been noted that when volatile compounds compete for the same binding sites on beta-cyclodextrin, ethyl hexanoate, 2-methylbutyric acid, and benzyl alcohol are, respectively, better retained than ethyl propionate, hexanoic acid, and hexanol. Preferential retention observed with esters can be simply explained by their difference of physicochemical properties, but for the acids and alcohols a study at the molecular scale has been necessary. The better retention of 2-methylbutyric acid can be explained by differences in the nature of interaction between the acids and their carrier. At least selectivity of retention noted for the alcohol could be due to a difference in the location of the guest and also a difference in the number of aroma molecules that can be bound per polysaccharide molecule.  相似文献   

8.
烤烟苯丙氨酸类致香物质与土壤理化性状的典型相关分析   总被引:2,自引:0,他引:2  
通过分析河南省12个烟区土壤与烟叶各335个样品的测试数据,采用典型相关分析方法研究了烤烟苯丙氨酸类致香物质含量与土壤理化性状之间的关系.结果表明:苯甲醛、苯乙醇与土壤速效钾含量、粒径0.05 ~ 0.001 mm的土壤颗粒含量呈正相关,与pH、镁、钙、铁、铝、钠含量呈负相关;苯甲醇与速效钾含量呈负相关,与钠含量呈正相关;苯乙醛与土壤理化性状的各项指标无显著相关性.  相似文献   

9.
植物乳杆菌(Lactobacillus plantarum)能够抑制黄曲霉生长,但起主要抑菌作用的物质尚未明确。该研究采用非靶向代谢组学技术比较分析了8株抑菌活性较好(S组)和8株抑菌活性较差(W组)的L. plantarum发酵上清液。结果显示,两组L. plantarum发酵上清液的代谢组存在显著差异(P<0.05)。通过数据库比对鉴定得到咪唑乙酸、酪氨酸等30个显著差异代谢物(P<0.05),其中有机酸、脂肪酸等酸性物质较多为22个。通过与已报道的乳酸菌产生的抗真菌物质相比较,找到十八烷酸、吲哚乙酸等结构一致或结构类似物,表明上清液中酸性物质起主要的抑菌作用,且其抑菌活性依赖于低 pH 值的酸性环境。在L. plantarum产生的主要有机酸中,乳酸、乙酸、丙酸的抑菌活性良好,其抑制黄曲霉活性从大到小依次为丙酸、乙酸、乳酸。当乙酸浓度为2.64g/L、丙酸浓度为1.76 g/L时,可完全抑制浓度为106个/mL的黄曲霉孢子生长。综合表明,植物乳杆菌代谢物中有机酸和脂肪酸为主要抑菌物质,且抑菌活性随酸性物质浓度增大而增强。  相似文献   

10.
Phenyllactic acid (PLA) is a novel antimicrobial compound synthesized by lactic acid bacteria (LAB), and its production from phenylpyruvic acid (PPA) is an effective approach. In this work, a lactate dehydrogenase (LDH), which catalyzes the reduction of PPA to PLA, has been purified to homogeneity from a cell-free extract of Lactobacillus sp. SK007 by precipitation with ammonium sulfate, ion exchange, and gel filtration chromatography. The purified enzyme had a dimeric form with a molecular mass of 78 kDa (size exclusion chromatography) or 39 kDa (SDS-PAGE). The ratio of enzyme activity with PPA to that with pyruvate being almost invariable at every purification step indicated that, in Lactobacillus sp. SK007, LDH is responsible for the conversion of PPA into PLA. HPLC profiles of PPA transformation into PLA by growing cells, cell-free extract, and purified LDH of Lactobacillus sp. SK007 were also investigated. Results showed that the presence of NADH was found to be necessary for the enzymatic production of PLA from PPA. The purified LDH displayed optimal activity for PPA at pH 6.0 and 40 degrees C. The Km values of the enzyme for PPA and pyruvate were 1.69 and 0.32 mM, respectively. Moreover, because other screened LAB strains exhibiting relatively high LDH activity toward PPA produced also considerable amounts of PLA, LDH activity for PPA could be therefore used as a screening marker for PLA-producing LAB.  相似文献   

11.
The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments.  相似文献   

12.
Regulation of ethylene biosynthesis or action has a major effect on volatiles production in apples. To understand the biochemical processes involved, we used Greensleeves apples from a transgenic line with a high suppression of ethylene biosynthesis. The study was focused at the level of the aroma volatile-related enzymes, including alcohol acyltransferase (AAT), alcohol dehydrogenase (ADH), and lipoxygenase (LOX) and at the level of amino acids and fatty acids as aroma volatile precursors in peel and flesh tissues. In general, volatile production, enzyme activity levels, and precursor availability were higher in the peel than the flesh and were differentially affected by ethylene regulation. AAT enzyme activity showed a clear pattern concomitant with ethylene regulation. Contrarily, ADH and LOX seem to be independent of ethylene modulation. Isoleucine, an important precursor of aroma compounds including 2-methylbutanoate esters, showed a major increase in the peel during ripening and responded significantly to ethylene regulation. Other important aroma volatiles precursors, like linoleic and linolenic acid, showed an accumulation during ripening associated with increases in aldehydes. The significance of these changes in relation to aroma volatile production is discussed.  相似文献   

13.
利用聚丙烯酰胺凝胶电泳分析了泥蚶(Tegillarca granosa)能量代谢相关的10种同工酶。酯酶和α-淀粉酶是同能量吸收有关的酶,主要分布于消化腺里。苹果酸脱氢酶、苹果酸酶、异柠檬酸脱氢酶、琥珀酸脱氢酶、醇脱氢酶、乳酸脱氢酶、6-磷酸葡萄糖脱氢酶和三磷酸腺苷激酶是与能量代谢相关的酶。泥蚶的能量供应有3种途径:有氧呼吸、无氧酵解和磷酸戊糖途径。从泥蚶体内含有很高活性的6-磷酸葡萄糖脱氢酶可知,磷酸戊糖途径是泥蚶糖代谢的主要途径,NADP为供能体。同其它贝类相比,泥蚶的三磷酸腺苷激酶的活性很低,这与它们的埋栖生活不活跃运动的习性是一致的。  相似文献   

14.
The objective of the present study was to purify and characterize the lipoxygenase (LOX) from banana leaf (Giant Cavendishii, AAA), an unutilized bioresource. LOX was extracted, isolated, and purified 327-fold using 25-50% saturation of ammonium sulfate fractionation, hydroxyapatite column separation, and gel filtration on Superdex 200. The molecular mass of the purified LOX was 85 kDa, K(m) was 0.15 mM, and V(max) was 2.4 microM/min.mg using linoleic acid as substrate. Triton X-100 was required in the extraction medium; otherwise, no LOX activity was detected. LOX activity increased with the concentration of Triton X-100 with an optimum at 0.1%. The optimal pH of the purified LOX from banana leaf was 6.2, and optimal temperature was 40 degrees C. The LOX showed the highest reactivity toward 18:2 followed by 18:3 and 20:4. A very low reaction rate was observed toward 20:5 and 22:6. On the basis of retention time in normal phase HPLC, the products of 18:2 or 18:3 catalyzed by purified LOX were hydroperoxyoctadecadienoic acid or hydroperoxyoctadecatrienoic acid. It seems that 9-LOX is the predominant enzyme in banana leaf. Banada leaf dried at 110 degrees C for 2 h developed algal aroma. Banana leaf extract stored at 10 degrees C for 12 h formed an oolong tea-like flavor. Banana leaf extract reacted with 18:2 or soybean oil pretreated with bacterial lipase produced green and melon-like aroma, whereas the same reaction with 18:3 produced a sweet, fruity, cucumber-like flavor note.  相似文献   

15.
乳酸菌胞外多糖能显著改善发酵乳制品及食品的流变学和质构特性。为进一步了解乳酸菌胞外多糖的生物合成途径及调控机制,本研究对参与植物乳杆菌C88胞外多糖生物合成基因簇的部分序列进行了克隆和鉴定。根据GenBank中己报道植物乳杆菌基因序列的保守区域设计特异性引物,扩增出植物乳杆菌C88生物合成蛋白基因(cps4A)序列,并通过染色体步移方法克隆了植物乳杆菌C88参与胞外多糖合成基因簇的部分序列(4.9kb)。利用生物信息学方法预测基因簇中6个阅读框的结构和功能,结果表明该序列与己报道的乳酸杆菌胞外多糖生物合成基因具有高度的同源性(〉96%);对各阅读框功能预测分析发现,这6个基因主要编码参与胞外多糖合成中的多糖合成蛋白、糖链长度检测蛋白、UDP-葡萄糖-4-异构酶和糖基转移酶。本研究将为利用基因工程方法调控多糖的合成和产量提供理论依据。  相似文献   

16.
Methyl ketones are detected in dry fermented sausages in which they contribute to the cured aroma. They have been associated with the inoculation of Staphylococcus carnosus used as starter culture.To evaluate the ability of bacterial starters to produce methyl ketones it was necessary to develop a rapid method. The method consists of a reaction catalyzed by a commercial NADPH-dependent alcohol dehydrogenase that reduces the 2-pentanone to its secondary alcohol. The linearity, the specificity, and the robustness were studied. Its accuracy was confirmed by comparison with the gas chromatography technique. Finally, the method was validated on biological samples such as the 2-pentanone produced by Staphylococcus carnosus. The enzymatic method offers some advantages over the gas chromatography, as it is faster, simpler, and inexpensive, guaranteeing an effective way to assess bacterial ketone production.  相似文献   

17.
The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold.  相似文献   

18.
Endoglucanase has been isolated from Aspergillus aculeatus. The purified enzyme showed a single band and had a molecular weight of 45,000 Da as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a specific activity of 1.4 units/mg. The purified enzyme was identified as endoglucanase, showing a high specific activity toward CM-cellulose and low specific activity toward Avicel. The activity of the isolated enzyme was optimum at a pH of 5.0 and temperature of 40 degrees C, respectively. The isoelectric point of the enzyme was 4.3. T(m) was found to be 57 degrees C. The treatment of the endoglucanase with diethylpyrocarbonate resulted in the modification of the histidine residues present in the enzyme, with a concomitant loss of 70% of the original enzymatic activity. However, carbodiimide completely inactivated the endoglucanase. The results show that the enzyme is able to sustain 50% of its activity even when heated at 90 degrees C for a period of 5 h. Endoglucanase can be used in the controlled hydrolysis of cellulose and other cellulose-rich foods. It can be used in the development of targeted functional foods from agrimaterials for value addition in the food chain.  相似文献   

19.
The xylose-fermenting yeast Candida intermedia produces two isoforms of xylose reductase: one is NADPH-dependent (monospecific xylose reductase; msXR), and another is shown here to prefer NADH approximately 4-fold over NADPH (dual specific xylose reductase; dsXR). To compare the functional properties of the isozymes, a steady-state kinetic analysis for the reaction d-xylose + NAD(P)H + H(+) <--> xylitol + NAD(P)(+) was carried out and specificity constants (k(cat)/K(aldehyde)) were measured for the reduction of a series of aldehydes differing in side-chain size as well as hydrogen-bonding capabilities with the substrate binding pocket of the enzyme. dsXR binds NAD(P)(+) (K(iNAD+) = 70 microM; K(iNADP+) = 55 microM) weakly and NADH (K(i) = 8 microM) about as tightly as NADPH (K(i) = 14 microM). msXR shows uniform binding of NADPH and NADP(+) (K(iNADP+) approximately K(iNADPH) = 20 microM). A quantitative structure-activity relationship analysis was carried out by correlating logarithmic k(cat)/K(aldehyde) values for dsXR with corresponding logarithmic k(cat)/K(aldehyde) values for msXR. This correlation is linear with a slope of approximately 1 (r (2) = 0.912), indicating that no isozyme-related pattern of substrate specificity prevails and aldehyde-binding modes are identical in both XR forms. Binary complexes of dsXR-NADH and msXR-NADPH show the same macroscopic pK of approximately 9.0-9.5, above which the activity is lost in both enzymes. A lower pK of 7.4 is seen for dsXR-NADPH. Specificity for NADH and greater binding affinity for NAD(P)H than NAD(P)(+) are thus the main features of enzymic function that distinguish dsXR from msXR.  相似文献   

20.
Pesticides in fermentative processes of wine.   总被引:2,自引:0,他引:2  
The influence of six fungicides (azoxystrobin, cyprodinil, fludioxonil, mepanipyrim, pyrimethanil, and tetraconazole) on the fermentative activity of two yeasts (Saccharomyces cerevisiae and Kloeckeraapiculata) and two lactic bacteria (Leuconostoc oenos and Lactobacillus plantarum) was studied. The possibility of their being degraded by these yeasts and bacteria was also investigated. The presence of the pesticides did not affect alcoholic fermentation, not even with levels higher than those normally found in grapes in field experiments. On the contrary, their presence stimulated the yeast, especially K. apiculata, to produce more alcohol. The fermentative process did not affect the amount of pesticides either by degradation or by adsorption. During malolactic fermentation by Le. oenos, malic acid decreased slightly less (by approximately 15%) in the presence of all pesticides, except mepanipyrim. A lower effect ( approximately 5%) was found during the fermentative process with La. plantarum. The bacteria studied did not show a degradative effect on pesticides during malolactic fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号