首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal stabilization stage of polyacrylonitrile (PAN) fibers is characterized by a steady and continuous reduction in fiber diameter and linear density values together with color changes from reddish brown to shiny black with increasing stabilization time. Thermally stabilized PAN fibers acquire infusible and nonburning characteristics prior to the carbonization stage. Structural characterization of thermally stabilized polyacrylonitrile fibers was carried out using an indepth analysis of equatorial X-ray diffraction traces. Curve fitting of X-ray diffraction traces provided accurate peak parameters which were subsequently used for the evaluation of apparent crystallinity, apparent crystallite size and X-ray stabilization index. The results showed the loss of crystallinity due to the amorphization processes together with a steady and continuous decrease in lateral crystallite size with increasing stabilization time. With the progress of thermal stabilization, a new amorphous phase with a crosslinked and aromatized structure is formed which is expected to withstand high carbonization temperatures. Mechanical properties of the thermally stabilized PAN precursor fibers were found to be adversely affected with the progress of stabilization time. Due to the influence of thermal degradation mechanisms heavily involving chain scission along the fiber axis direction, tensile strength and tensile modulus values were found to decrease by significant proportions with the prolonged stabilization times.  相似文献   

2.
Structural transformations taking place during the thermal stabilization of polyacrylonitrile (PAN) fiber used for the production of carbon fiber were characterized using a combination of polarized infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and density measurements. Direct relationship between the increasing oxygen content and the density values was confirmed with increasing stabilization time. Linear density values were found to be directly influenced by the stabilization time. Thermal stability of stabilized precursor fibers was evaluated in terms of weight loss and residual weight fraction. The results showed that a residual weight fraction of 65 % at 1000 °C can be obtained but longer stabilization time resulted in a loss of residual weight fraction due to excessive thermal degradation. SEM was used for the observation of surface morphological features of stabilized precursor fibers. Polarized infrared spectroscopy showed the loss of molecular orientation of methylene (CH2), nitrile (Ct=N), and carbonyl (C=O) groups in direct response to the effects of cyclization, dehydrogenation, and amorphization (i.e. decrystallization) processes taking place during the stabilization stage.  相似文献   

3.
An investigation on the role of cupric (Cu2+) ion incorporation during the thermal stabilization of polyamide 6 fibers was carried out using a combination of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) measurements. Cupric chloride pretreated and thermally stabilized polyamide 6 (PA6) fibers was characterized by a reduction in fiber diameter and linear density values together with color changes from light brown to black with increasing stabilization time. PA6 fibers were properly stabilized after 8 h of stabilization time prior to carbonization. The results obtained from DSC and TGA measurements indicated that there was an improvement in the thermal stability when cupric (Cu2+) ions were incorporated into the polymer structure. TGA thermograms showed the relative improvement in thermal stability as indicated by increasing char yield with progressing time. Char yield reached a maximum value of 33.6 % at 1000 °C for the cupric chloride pretreated PA6 fibers stabilized for 12 h at 180 °C. Experimental results obtained from DSC and X-ray diffraction methods suggested the loss of crystallinity as a result of perturbation of hydrogen bonds with progressing time. The formation of cupric ion-amide coordination bonds improved the thermal stabilization by encouraging the development of ladder-like structures. The investigation resulted in a new method of evaluation of X-ray stabilization index specifically intended for the thermally stabilized PA6 fiber.  相似文献   

4.
Polyacrylonitrile (PAN) precursor fibers were modified for different periods of time using hydrogen peroxide aqueous solution. A variety of tests were employed to characterize the fibers. The modification could induce cyclization and oxidation in the precursor fibers, as reflected by the changes in length and diameter of the fibers, and the results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Compared with the unmodified fiber, the modified fibers released less heat during a heating process similar to stabilization of PAN precursor fiber. Also, the modified fibers showed lower characteristic temperatures on differential scanning calorimetry (DSC) thermograms, and lower onset temperature of weight loss on thermal gravimetry (TG) curves. The modified fibers had more surface defects and hence exhibited lower tenacity and tensile modulus. Compared with the unmodified fibers, however, the modified fibers had smoother surface and fewer defects after stabilization. The strain decreased with increasing temperature under a constant tension for all the fibers. At the temperatures above 200 °C, the shrinkage of the fibers decreased with the increase of modification time, because a certain degree of cyclization and oxidation occurred in modified fibers, making them shrink less in the temperature range equivalent to stabilization.  相似文献   

5.
The effect of in situ thermal stretching during oxidative stabilization on the orientation of cyclized ladder structure was investigated. Based on the structure evolution of PAN fibers with the increasing stabilization temperatures, the stabilization process was classified into three different stages, namely before the onset of cyclization, during cyclization in amorphous region, and during cyclization in crystalline region. The polyacrylonitrile (PAN) precursor fibers were stretched at the three stages with stretching ratios from 0 % to 8 % during continuous stabilization process. The results show that the orientation degree of cyclized ladder structure increases with the increase of stretching ratio at the three stages and the maximum orientation efficiency of cyclized ladder structure is obtained when PAN fibers are stretched at the stage of during cyclization in crystalline region. The orientation of resulting carbon fibers strongly depends on the orientation degree of cyclized ladder structure. The orientation efficiency of turbostratic graphite crystallite also agrees well with that of cyclized ladder structure. Meanwhile, the orientation efficiency of turbostratic graphite crystallite is higher than that of cyclized ladder structure and the difference values between orientation efficiency of the two structures decrease firstly then increase with the increase of degree of cyclization.  相似文献   

6.
In this study, the surface functionalization of polyacrylonitrile (PAN) fibers was achieved by depositing ZnO nanoparticles using thermal solvent coating. surface morphology, crystalline structure, surface chemistry, thermal stability and washing stability of the ZnO coated PAN fibers were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform Infra red spectroscopy (FT-IR), Thermo-gravimetric analyses (TGA) and washing stability test, respectively. In addition, the weight changes after coating and washing were studied at different coating and washing conditions. The SEM images revealed that the ZnO was well coated on the surface of the PAN fibers and the coating was obviously affected by the experimental temperature. The FT-IR spectra indicated the chemical features of the deposited ZnO nanostructures. The XRD patterns showed that there was a typical crystalline structure of ZnO nanogains formed on the PAN fibers after coating. The TGA results revealed that the thermal stability of the PAN fibers was improved by the ZnO coating. The experimental results of washing stability revealed the effect of temperature on the washing stability. Weight measurements indicated that the amount of ZnO deposited on PAN fibers increased with the increasing of coating temperature from 60 to 70 °C. Weight measurements also revealed that the weight of the ZnO coating on fibers decreased with the increase in washing temperature and washing time.  相似文献   

7.
The Fe-montmorillonite (Fe-MMT) combined catalysis effects of Fe ion with barrier effects of silicate clays, was firstly synthesized by hydrothermal method, and then was modified by cetyltrimethyl ammonium bromide (CTAB). The organic-modified Fe-montmorillonite (Fe-OMT) was dispersed in the N, N-dimethyl formamide (DMF) and then compounded with polyacrylonitrile (PAN) solution which was dissolved in DMF. The composite solutions were electrospun to form PAN/Fe-OMT nanocomposite fibers. The influences of the Fe-OMT on the structure, morphology, thermal, flammability and mechanical properties of PAN nanocomposite fibers were respectively characterized by X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Thermogravimetric analyses (TGA), Micro Combustion Calorimeter (MCC) and Electronic Single Yarn Strength Tester. It was found from XRD curves that there was not observable diffraction peak of silicate clay, indicating that the silicate clay layers were well dispersed within the PAN nanofibers. The HRTEM image indicated that the multilayer stacks of nanoclays could be found within the nanofibers and were aligned almost along the axis of the nanofibers. The SEM images showed that the diameters of nanocomposite fibers were decreased with the loading of the Fe-OMT. The TGA analyses revealed that the onset temperature of thermal degradation and charred residue at 700°C of PAN nanocomposite fibers were notably increased compared with the pure PAN nanofibers, contributing to the improved thermal stability properties. It was also observed from MCC analyses that the decreased peak of heat release rate (PHRR) of the PAN nanocomposite fibers reduced the flammability properties. The loadings of Fe-OMT increased the tensile strength of PAN nanocomposite fibers, but the elongation at break of PAN nanocomposite fibers was lower than that of the PAN nanofibers.  相似文献   

8.
Irradiation crosslinking of PA6 fibers with and without the presence of triallyl cyanurate (TAC) was investigated. The dose for incipient gel formation was 500 kGy for pristine PA6 fibers and it decreased to 12 kGy when 5 % TAC was incorporated. Changes in structure and properties of irradiated PA6 fibers were analyzed by X-ray diffraction, infrared spectroscopy and thermal gravimetric analysis. Irradiation crosslinking improved the anti-dripping properties of PA6 fibers effectively. Irradiated samples showed an increase of the breaking strength and then a decrease at further doses due to radiolysis effect, the elongation at break decreased during the irradiation process. Irradiation crosslinking had not changed the crystal form and crystallinity decreased first and then increased to some extent. DSC measurement reported that the melting temperature decreased with increasing the dose. The thermal stability decreased after irradiation whereas the amount of nonvolatile residue at 600 °C increased as the irradiation dosage increased. The infrared spectra of irradiated samples were identical with the unirradiated, no new bands were observed.XPS analysis showed that the number of C-C band increased after irradiation which proves that branching and crosslinking has occurred.  相似文献   

9.
Siloxylated polypropylene fibers composed of polypropylene (PP) and aluminosiloxane (AS) were prepared by melt blending followed by spinning. The effects of blend compositions on the thermal behaviors, surface and tensile properties of PP/AS blend fibers were investigated by DSC, WAXD, SEM, static honestometer, etc. The heat of fusion of PP/AS blends decreased with increasing AS contents. In addition, the peak intensity of PP/AS blends in X-ray diffraction patterns decreased with increasing AS contents. It was observed that the silicone molecules exist and well distribute on the surface of siloxylated polypropylene fibers. From the results of the half-life period measurements, the anti-static properties of PP fibers siloxylated with AS was found to be significantly modified.  相似文献   

10.
Carbon fibers and precursor polyacrylonitrile (PAN) fibres that contain either silica or hydroxyapatite particles, imbedded during the spinning process, were studied in this paper. The modified PAN fibers were thermally stabilized using a multi-stage process in the temperature range between 150 to 280 °C in an oxidative environment. Subsequent carbonization leading to obtain carbon fibers was carried on at 1000 °C in an argon atmosphere. The changes of properties of composite precursor fibers taking place during stabilization and carbonization processes were investigated by the combination of Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy equipped with energy dispersive X-ray spectrometer and ultrasonic methods. Mechanical properties, such as tensile strength, static Young’s modulus, elongation at fracture were analyzed at each stage of thermal stabilization process. Additionally some traditional measurements like fiber diameter and mass were studied. Ceramic powders added to the spinning solution were present also in composites fibers after stabilization and carbonization process. Such modification allows to avoid the post-treatment operations, for example by coating or covering with films, which were usually necessary in order to obtain bioactive character of implants. Modification of carbon fibers using calcium phosphate or silica can lead to the development of a new materials for the manufacturing of implants which can establish direct chemical bonds with bone tissue after implantation.  相似文献   

11.
The radial structure of polyacrylonitrile (PAN) copolymer fibers was investigated quantitatively by etching layer by layer in an improved permanganic etchant; meanwhile the effect of the etchant on the fiber surface was taken into consideration. The aggregated structure (crystal size, crystallinity, orientation and density) and thermal stability of each circumferential layer of PAN fibers were determined in detail according to a model proposed in the study. A denser layer with a thickness of about 1 µm was observed in the subsurface (2 µm from the PAN fiber surface), possessing a greater crystal size and crystallinity as well as a relatively higher thermal stability than other layers. This layer was considered to be a barrier for the diffusion of oxygen into PAN fibers during the stabilization and accelerated the formation of a core-shell structure in the resulting carbon fibers.  相似文献   

12.
Graft modification of collagen with acrylonitrile in concentrated aqueous solution of sodium thiocyanate (NaSCN) is developed in this paper. This modification can largely change it’s solubility in water and can be applied in fiber production. Grafting modified collagen is characterized by infrared spectrum and wide angle X-ray diffraction. Wet spinning of PAN fibers containing several content of modified collagen is performed. The tests about these fibers show that breaking strength and sonic orientation decrease as the amount of collagen is raised. The addition of collagen can largely improve the moisture regain of PAN fiber. Micro-appearance of fibers observed under scanning electron microscope (SEM) presents circular cross section and longitudinal grooves on surface, the depth of grooves increases with the increasing draw ratio.  相似文献   

13.
A comparison of poly(trimethylene terephthalate)(PTT) and poly(ethlene terephthalate)(PET) fibers spun at various take-up speeds was presented. Fiber characterization included tensile and thermal properties, optical birefringence, density, sonic modulus, boil-off shrinkage, and wide-angle X-ray diffraction. The phenomenon of stress-induced crystallization was inferred from the X-ray diffraction diagrams for fibers spun with take-up speeds over 4000 m/min. The tenacity and elongation of PTT and PET fiber showed typical results, but the initial modulus of PTT fiber was nearly unchanged over the entire take-up speed range (2000–7000 m/min), whereas that of PET, as expected, increased monotonically with increasing take-up speed. This divergent behavior could be explained by the different molecular deformations in the c-axis as determined from X-ray diffraction patterns. The fiber crystallinity, density, and heat of fusion of both polymers increased with take-up speed. The boil-off shrinkage decreased with increasing take-up speed. The optical birefringence of the two fiber types showed a maximum level at a take-up speed of ca. 5000 m/min. The melting temperature behavior of PTT fiber was different from that of PET fibers. It was found that PTT is less sensitive to stress induced changes at high spinning speeds than is PET.  相似文献   

14.
As a kind of high-performance fibers, PTFE fiber has been widely used in many fields because of its unique characteristics. In this study, the poly(tetrafloroethylene) (PTFE) nanofibers manufactured by electrospinning method was reported. The gel-spinning solution of poly(tetrafluoroethylene)/poly(vinyl alcohol)/boric acid (PTFE/PVA/BA), which was prepared by the gel process of the mixture of PTFE, PVA, BA and redistilled water, was electrospun to form PTFE/PVA/BA composite nanofibers. After calcinating, the PTFE nanofibers with diameters of 200 nm to 1000 nm were obtained. The fibers before and after calcinating were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT-IR spectrum analysis and X-ray photoelectron spectroscopy (XPS), respectively, and the mechanical and hydrophobic properties of the fibers were also investigated. The results showed that the PTFE nanofiber membranes could be electrospun effectively used the gel-spinning solution of PTFE/PVA/BA, and may realize the applications in the fields of high-temperature filtration, catalyst supports, battery separator and so on.  相似文献   

15.
Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO2 were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of SiO2 networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-IR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the SiO2 networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDFγ-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2θ=21° due to PVDF crystallization, and intensity increased gradually with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of SiO2 networks. That is, SiO2 content directly influenced preference and disturbance for crystallization. In polymer-rich hybrids, SiO2 networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum percent crystallinity of PVDF occurred at the content of 3.7 wt% SiO2 and was higher than that of pure PVDF. However, beyond about 10 wt% SiO2, the crystallization of PVDF was strongly confined.  相似文献   

16.
A selection of commercially available poly(ethylene terephthalate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.  相似文献   

17.
A selection of commercially available poly(ethylene terephthalate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.  相似文献   

18.
The interest to innovative products with high added values and processes in textile field has been rapidly increasing among the other industrial fields. One of innovations in this field is to produce of innovative textiles containing phase change material (PCMs) that have thermal storage and thermo-regulation properties. This study deals with preparation and characterization of poly(methylmethacrylate-co-glycidyl methacrylate)/n-hexadecane nanocapsules containing nhexadecane as phase change material for thermal energy storage. The chemical characterization of poly(methylmethacrylateco-glycidyl methacrylate)/n-hexadecane nanocapsules was made by fourier transform infrared (FT-IR) spectroscopy method as particle size and its distribution (PSD) were studied by scanning electron microscopy (SEM). Thermal properties of nanoencapsulated n-hexadecane were determined using differential scanning calorimetry (DSC). The melting and freezing temperatures of the nanoencapsulated n-hexadecane were 17.23 and 14.85 °C respectively as the latent heats of melting and crystallization were 148.05 and −147.63 J/g respectively. Produced nanocapsules were applied to polyacrylonitrile (PAN) by means of electrospinning and surface morphology of the fibers was investigated by SEM analysis. Based on the results, it can be considered that the nanoencapsulated n-hexadecane in poly(methylmethacrylate-co-glycidyl methacrylate) have good energy storage potential to be used in fibers.  相似文献   

19.
The Allyl-heptaisobutyl-polyhedral oligomeric silsesquioxane (AHO-POSS) grafted polypropylene (PP) was prepared by reactive extrusion and by physical blending routes. The structure and properties of physically blended and reactively blended POSS/PP nanocomposites were investigated by FTIR, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis, SEM, spherutlic growth and mechanical properties studies. Chemical bonding of POSS with PP in reactive extrusion was confirmed by FT-IR spectroscopy. DSC and TGA studies showed that the thermal stability of AHO-POSS/PP nanocomposite prepared by reactive extrusion improved significantly as compared to only physically blended nanocomposites. WAXD studies showed decrease in crystallinity of the AHO-POSS/PP nanocomposites prepared by reactive extrusion. SEM studies showed aggregation tendency in case of physically blended AHO-POSS/PP nanocomposites. Spherulite growth studies show reactive blending retards spherulite growth in PP polymer.  相似文献   

20.
We have synthesized a series of copolymers with different compositions of acrylonitrile (AN, 80–100 wt%), methyl acrylate (MA, 4–20 wt%) and itaconic acid (IA, 0–3 wt%) by using an efficient aqueous suspension polymerization, and have investigated the molecular structure and thermal stabilization behavior of PAN homopolymer, AN/MA-based bipolymers, and AN/MA/IA-based terpolymers by adopting 1H/13C-NMR and thermal FT-IR analyses. The viscosity-average molecular weight of the synthesized polymers were measured to be ~263,000 g/mol. The reactivity ratios of AN and MA for all the copolymers were evaluated to be 0.99 and 1.05, respectively. Accordingly, the output compositions of the synthesized copolymers were quite consistent with the input monomer compositions. The 13C NMR analysis revealed that all the synthesized polymers have an atactic chain configuration, regardless of the feed composition. The structural evolutions during the thermal stabilization process of the copolymers in air environment were characterized by monitoring the temperature-dependent changes of characteristic absorbance bands at 2240 cm-1 (C≡N), 1595 cm-1 (C=N) and 1660 cm-1 (C=O) with aid of thermal FT-IR spectroscopy. It was found that the IA unit in the terpolymers accelerated the oxidation and cyclization reactions, unlike the retarding effect of MA unit, and that the onset temperatures of the oxidation reaction of the copolymers with IA unit was lower than that of the cyclization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号