首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomographic images of upper mantle velocity structure beneath an overlapping spreading center (OSC) on the East Pacific Rise indicate that this ridge axis discontinuity is underlain by a continuous region of low P-wave velocities. The anomalous structure can be explained by an approximately 16-kilometer-wide region of high temperatures and melt fractions of a few percent by volume. Our results show that OSCs are not necessarily associated with a discontinuity in melt supply and that both OSC limbs are supplied with melt from a mantle source located beneath the OSC. We conclude that tectonic segmentation of the ridge by OSCs is not the direct result of magmatic segmentation at mantle depths.  相似文献   

2.
Mid-ocean ridge basalts (MORBs) and ocean island basalts (QIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and QIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.  相似文献   

3.
INDEPTH geophysical and geological observations imply that a partially molten midcrustal layer exists beneath southern Tibet. This partially molten layer has been produced by crustal thickening and behaves as a fluid on the time scale of Himalayan deformation. It is confined on the south by the structurally imbricated Indian crust underlying the Tethyan and High Himalaya and is underlain, apparently, by a stiff Indian mantle lid. The results suggest that during Neogene time the underthrusting Indian crust has acted as a plunger, displacing the molten middle crust to the north while at the same time contributing to this layer by melting and ductile flow. Viewed broadly, the Neogene evolution of the Himalaya is essentially a record of the southward extrusion of the partially molten middle crust underlying southern Tibet.  相似文献   

4.
Schmerr N 《Science (New York, N.Y.)》2012,335(6075):1480-1483
The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.  相似文献   

5.
Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.  相似文献   

6.
One of the principal means of understanding upper mantle dynamics involves inferring mantle flow directions from seismic anisotropy under the assumption that the seismic fast direction (olivine a axis) parallels the regional flow direction. We demonstrate that (i) the presence of melt weakens the alignment of a axes and (ii) when melt segregates and forms networks of weak shear zones, strain partitions between weak and strong zones, resulting in an alignment of a axes 90 degrees from the shear direction in three-dimensional deformation. This orientation of a axes provides a new means of interpreting mantle flow from seismic anisotropy in partially molten deforming regions of Earth.  相似文献   

7.
Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km.  相似文献   

8.
Helium loss, tectonics, and the terrestrial heat budget   总被引:1,自引:0,他引:1  
It has been known for the last decade that primordial helium incorporated in Earth at the time of its formation is still being degassed during the formation of new ocean crust at spreading ocean ridges. It is now clear that somewhat contrary to expectation, substantial degassing is also taking place through the continental crust. In western Europe the escape of mantle volatiles seems to occur largely where the crust is undergoing active extension. Although it is known that melting is the principal process for extracting and concentrating helium from the mantle at ocean ridges, the equivalent subcontinental process remains poorly understood. The same elements that are responsible for most of Earth's radiogenic heating (uranium and thorium) are also responsible for the generation of radiogenic helium. The present rate of mantle heat loss, however, is out of equilibrium with the rate of helium loss-too large by about a factor of 20. Either radiogenic helium is accumulated in the mantle while heat escapes or current models for the bulk chemistry of Earth are in error and much of the terrestrial heat loss is nonradiogenic.  相似文献   

9.
Seismic data from the ultrafast-spreading (150 to 162 millimeters per year) southern East Pacific Rise show that the rise axis is underlain by a thin (less than 200 meters thick) extrusive volcanic layer (seismic layer 2A) that thickens rapidly off axis. Also beneath the rise axis is a narrow (less than 1 kilometer wide) melt sill that is in some places less than 1000 meters below the sea floor. The small dimensions of this molten body indicate that magma chamber size does not depend strongly on spreading rate as predicted by many ridge-crest thermal models. However, the shallow depth of this body is consistent with an inverse correlation between magma chamber depth and spreading rate. These observations indicate that the paradigm of ridge crest magma chambers as small, sill-like, midcrustal bodies is applicable to a wide range of intermediate- and fast-spreading ridges.  相似文献   

10.
Near the Mantle Electromagnetic and Tomography (MELT) Experiment, seamounts form and off-axis lava flows occur in a zone that extends farther to the west of the East Pacific Rise than to the east, indicating a broad, asymmetric region of melt production. More seamounts, slower subsidence, and less dense mantle on the western flank suggest transport of hotter mantle toward the axis from the west. Variations in axial ridge shape, axial magma chamber continuity, off-axis volcanism, and apparent mantle density indicate that upwelling is probably faster and more melt is produced beneath 17 degrees15'S than beneath 15 degrees55'S. Recent volcanism occurs above mantle with the lowest seismic velocities.  相似文献   

11.
A complex pattern of mantle flow in the Lau backarc   总被引:3,自引:0,他引:3  
Shear-wave splitting analysis of local events recorded on land and on the ocean floor in the Tonga arc and Lau backarc indicate a complex pattern of azimuthal anisotropy that cannot be explained by mantle flow coupled to the downgoing plate. These observations suggest that the direction of mantle flow rotates from convergence-parallel in the Fiji plateau to north-south beneath the Lau basin and arc-parallel beneath the Tonga arc. These results correlate with helium isotopes that map mantle flow of the Samoan plume into the Lau basin through an opening tear in the Pacific plate.  相似文献   

12.
T Okuchi 《Science (New York, N.Y.)》1997,278(5344):1781-1784
Because of dissolution of lighter elements such as sulfur, carbon, hydrogen, and oxygen, Earth's outer core is about 10 percent less dense than molten iron at the relevant pressure and temperature conditions. To determine whether hydrogen can account for a major part of the density deficit and is therefore an important constituent in the molten iron outer core, the hydrogen concentration in molten iron was measured at 7.5 gigapascals. From these measurements, the metal-silicate melt partitioning coefficient of hydrogen was determined as a function of temperature. If the magma ocean of primordial Earth was hydrous, more than 95 mole percent of H2O in this ocean should have reacted with iron to form FeHx, and about 60 percent of the density deficit is reconciled by adding hydrogen to the core.  相似文献   

13.
Niobium/Uranium Evidence for Early Formation of the Continental Crust   总被引:1,自引:0,他引:1  
Niobium/uranium ratios in greenstone-belt basalts and gabbros indicate that parts of the Late Archean mantle beneath Western Australia underwent a level of melt extraction, resulting in formation of the continental crust, comparable to that seen in the present mantle. The implication is either that (i) the amount of continental crust that formed before 2.7 x 10(9) years ago was much greater than generally thought or (ii) crustal growth occurred by severe depletion of small volumes of the mantle rather than by moderate depletion of a large volume of mantle.  相似文献   

14.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

15.
Percolation of core melts at lower mantle conditions   总被引:1,自引:0,他引:1  
Experiments at high pressure and temperature to determine the dihedral angle of core melts in lower mantle phases yielded a value of approximately 71 degrees for perovskite-dominated matrices. This angle, although greater than the 60 degrees required for completely efficient percolation, is considerably less than the angles observed in mineral matrices at upper mantle pressure-temperature conditions in experiments. In other words, molten iron alloy can flow much more easily in lower mantle mineralogies than in upper mantle mineralogies. Accordingly, although segregation of core material by melt percolation is probably not feasible in the upper mantle, core formation by percolation may be possible in the lower mantle.  相似文献   

16.
Seismic evidence for deep-water transportation in the mantle   总被引:2,自引:0,他引:2  
We report seismic evidence for the transportation of water into the deep mantle in the subduction zone beneath northeastern Japan. Our data indicate that water is released from the hydrated oceanic crust at shallow depths (< approximately 100 kilometers) and then forms a channel of hydrated mantle material on top of the subducting plate that is the pathway for water into the deep mantle. Our result provides direct evidence that shows how water is transported from the ocean to the deep mantle in a cold subduction zone environment.  相似文献   

17.
Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.  相似文献   

18.
Sen G  Jones RE 《Science (New York, N.Y.)》1990,249(4973):1154-1157
The maximum depth at which large (>1000 km(3)) terrestrial mafic magma chambers can form has generally been thought to be the Moho, which occurs at a mean depth of about 35 kilometers beneath the continents and 8 kilometers beneath ocean basins. However, the presence of layers of cumulus magnesium-rich spinel and olivine and intercumulus garnet in an unusual mantle xenolith from Oahu, Hawaii, suggests that this rock is a fragment of a large magma chamber that formed at a depth of about 90 kilometers; Hawaiian shield-building magmas may pond and fractionate in such magma chambers before continuing their ascent. This depth is at or near the base of the 90-million-year-old lithosphere beneath Oahu; thus, rejuvenated stage alkalic magmas containing mantle xenoliths evidently also originate below the lithosphere.  相似文献   

19.
R Kind  J Ni  W Zhao  J Wu  X Yuan  L Zhao  E Sandvol  C Reese  J Nabelek  T Hearn 《Science (New York, N.Y.)》1996,274(5293):1692-1694
Earthquake data collected by the INDEPTH-II Passive-Source Experiment show that there is a substantial south to north variation in the velocity structure of the crust beneath southern Tibet. North of the Zangbo suture, beneath the southern Lhasa block, a midcrustal low-velocity zone is revealed by inversion of receiver functions, Rayleigh-wave phase velocities, and modeling of the radial component of teleseismic P-waveforms. Conversely, to the south beneath the Tethyan Himalaya, no low-velocity zone was observed. The presence of the midcrustal low-velocity zone in the north implies that a partially molten layer is in the middle crust beneath the northern Yadong-Gulu rift and possibly much of southern Tibet.  相似文献   

20.
The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号