首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marek's disease virus (MDV) infection in the brain was studied chronologically after inoculating 3-week-old chickens of two genetic lines with two strains of serotype I MDV representing two pathotypes (v and vv+). Viral replication in the brain was strongly associated with the development of lesions. Three viral antigens (pp38, gB, and meq) were detected in the brain of infected chickens. Marked differences between v and vv+ pathotypes of MDV were identified for level of virus replication, time course of brain lesions, and expression of major histocompatibility complex (MHC) antigens. Two pathologic phenomena (inflammatory and proliferative) were detected in the brain of chickens inoculated with vv+MDV, but only inflammatory lesions were observed in those inoculated with vMDV. Inflammatory lesions, mainly composed of macrophages, CD4+ T cells, and CD8+ T cells, started at 6-10 days postinoculation (dpi) and were transient. Proliferative lesions, characterized by severe infiltrates of CD4+CD8- T cells (blasts), started at 19-26 dpi and persisted. Expression of MHC antigens in endothelial cells and infiltrating cells within the brain was influenced by MDV infection. Upregulation of MHC class II antigen occurred in all treatment groups, although it was more severe in those inoculated with vv+MDV. MHC class I antigen was downregulated only in those groups inoculated with vv+MDV. These results enhance our understanding of the nature and pattern of MDV infection in the brain and help to explain the neurovirulence associated with highly virulent MDV.  相似文献   

2.
Marek's disease virus (MDV) is an oncogenic cell-associated herpesvirus that causes T-cell lymphoma in chickens. Lymphoproliferative neoplasms in Marek's disease (MD) occur in various organs and tissues, including the viscera, peripheral nerves, skin, gonads, and musculatures. MDV is restrictively produced in the feather follicle epithelial (FFE) cells, and it gains access to the external environment via infected cells or as infectious enveloped cell-free virus particles. The goals of the present study were to 1) determine whether the MDV-induced skin lesions are neoplastic in nature or inflammatory reactions to viral infection, 2) determine whether physical presence of feather follicles (FF) is necessary for skin tumor development, and 3) study the role of skin epithelial cells not associated with feathers or FF in the replication and dissemination of infectious virus particles. Scaleless chickens that produce only a few scattered feathers and no sculate scales along the anterior metatarsi were used as a unique model to study the pathogenesis of dermal lesions. Histologic and immunohistochemical analysis revealed that the cutaneous lesions were tumorous as was manifested by massive accumulation of lymphoblasts and extensive activation of meq oncoprotein, the hallmark of MDV oncogenesis, within the skin lesions. Neoplastic cutaneous lesions in the scaleless chickens indicate that feather follicles are not necessary for skin tumor development. Finally, our preliminary data indicate that inoculation with supernatant fluid from homogenized and sonicated skin samples of MDV-infected scaleless chickens induces MD in susceptible birds, suggesting that skin epithelial cells not associated with FF also harbor infectious viral particles.  相似文献   

3.
Marek's disease (MD) outbreaks can occur in previously healthy adult layer or breeder flocks. However, it is not clear whether such outbreaks are caused by recent challenge with highly virulent (vv and vv+) strains of MD virus (MDV; i. e., new infection hypothesis) or by exacerbation of an earlier MDV infection (i. e., old infection hypothesis). To discriminate between these hypotheses, adult White Leghorn chickens of laboratory strains or commercial crosses with or without prior vaccination or MDV exposure were challenged at 18-102 wk of age with highly virulent MDVs, and lesion responses were measured. Horizontal transmission was studied in one trial. Challenge of adult chickens, which were free from prior MDV vaccination or exposure, with highly virulent MDV strains induced transient paralysis or tumors in 60%-100% of 29 groups (mean = 91%), and horizontal spread of virus was detected. The magnitude of the response was similar to that induced by challenge at 3 wk of age. In contrast, comparable challenge of adult chickens, which had been vaccinated or exposed to MDV early in life, induced transient paralysis or tumors in 0%-6% of 12 groups (mean = 0. 5%), although some birds showed limited virologic evidence of infection and transmission of the virus to contacts. The MD responses were influenced by the virulence of the challenge virus strain, and to a lesser extent by virus dose and route of exposure. Strong inflammatory lesions were induced in the brain and nerves of adult specific pathogen-free (SPF) chickens at 9-15 days after infection. The low susceptibility of previously vaccinated and exposed groups to challenge at > or =18 wk of age suggests that late outbreaks of MD in commercial flocks are not likely a result of recent challenge alone and that additional factors could be involved.  相似文献   

4.
A total of 114 male chickens from three sire families of a commercial cross of White Leghorn chickens were infected with RB-1B Marek's disease (MD) virus at 21 days of age by exposing them to chickens previously inoculated with MD virus. The presence of virus in feather tips, feather pulp, and MD viral antibodies indicated all chickens became infected. The first virus-positive chickens were observed at 12 days postexposure (dpe). The frequency reached a maximum at 27 dpe and then decreased. At 80 dpe, when the experiment was terminated, no viral DNA was detected in the feather pulp of the surviving chickens (82%). Death from MD was first observed at 38 dpe and reached 18% by the end of the experiment, with spleen lesions being the major MD lesion. The viral genome titers in spleen extracts of chickens with MD lesions was negatively correlated with the time of death, and, similar to feather pulp, none of the surviving chickens was virus positive at the end of the experiment. Quantization of the viral genome titers in feather tip extracts at 27 and 38 dpe revealed a positive correlation with the presence of MD lesions, but only in the declining phase (38 dpe) and not at the peak (27 dpe) of the viral titer. Sire effects were significant, indicating the presence of genetic factors that affect viral proliferation. Again, significance was only observed at 38 dpe and not at 27 dpe. The results indicate that, in this commercial line, 1) all chickens were susceptible to infection via contact exposure, 2) all surviving chickens recovered from the viral infection, and 3) it is not sufficient to measure viral titers at a single time point when using viral titers as an endpoint for MD susceptibility.  相似文献   

5.
Marek's disease (MD) is a highly contagious lymphoproliferative and demyelinating disorder of chickens. MD is caused by Marek's disease virus (MDV), a cell-associated, acute-transforming alphaherpesvirus. For three decades, losses to the poultry industry due to MD have been greatly limited through the use of live vaccines. MDV vaccine strains are comprised of antigenically related, apathogenic MDVs originally isolated from chickens (MDV-2), turkeys (herpesvirus of turkeys, HVT) or attenuated-oncogenic strains of MDV-1 (CVI-988). Since the inception of high-density poultry production and MD vaccination, there have been two discernible increases in the virulence of MDV field strains. Our objectives were to determine if common mutations in the major glycoprotein genes, a major lytic antigen phosphoprotein 38 (pp38) or a major latency/transformation antigen Meq (Marek's EcoRI-Q-encoded protein) were associated with enhanced MDV virulence. To address this, we cloned and sequenced the major surface glycoprotein genes (gB, gC, gD, gE, gH, gI, and gL) of five MDV strains that were representative of the virulent (v), very virulent (vv) and very virulent plus (vv+) pathotypes of MDV. We found no consistent mutations in these genes that correlated strictly with virulence level. The glycoprotein genes most similar among MDV-1, MDV-2 and HVT (gB and gC, approximately 81 and 75%, respectively) were among the most conserved across pathotype. We found mutations mapping to the putative signal cleavage site in the gL genes in four out of eleven vv+MDVs, but this mutation was also identified in one vvMDV (643P) indicating that it did not correlate with enhanced virulence. In further analysis of an additional 12 MDV strains, we found no gross polymorphism in any of the glycoprotein genes. Likewise, by PCR and RFLP analysis, we found no polymorphism at the locus encoding the pp38 gene, an early lytic-phase gene associated with MDV replication. In contrast, we found distinct mutations in the latency and transformation-associated Marek's EcoRI-Q-encoded protein, Meq. In examination of the DNA and deduced amino acid sequence of meq genes from 26 MDV strains (9 m/vMDV, 5 vvMDV and 12 vv+MDVs), we found distinct polymorphism and point mutations that appeared to correlate with virulence. Although a complex trait like MDV virulence is likely to be multigenic, these data describe the first sets of mutations that appear to correlate with MDV virulence. Our conclusion is that since Meq is expressed primarily in the latent/transforming phase of MDV infection, and is not encoded by MDV-2 or HVT vaccine viruses, the evolution of MDV virulence may be due to selection on MDV-host cell interactions during latency and may not be mediated by the immune selection against virus lytic antigens such as the surface glycoproteins.  相似文献   

6.
The pathogenicity of Marek's disease (MD) strain CVI-988 vaccine, eight plaque-purified preparations originating from this strain, and the vaccine HVT FC126 (based on herpesvirus of turkeys) was determined by intramuscular administration of high virus doses to day-old specific-pathogen-free Rhode Island Red (RIR) chickens, which are extremely MD-susceptible. Paralysis and neuritis were observed in 88% of RIR chickens inoculated with MDV CVI-988 at the cell-passage level of the commercial vaccine. HVT FC126 caused paralysis in two of 39 RIR chickens tested, of which one had an endoneural lymphoma, and another three had endoneural inflammation. Five plaque-purified MDV CVI-988 virus preparations at various cell-culture-passage levels caused no lesions. Of another three clones, two caused inflammatory B-type lesions in the nerves of 1/10 chickens, and the third clone caused inflammatory nonneoplastic MD lesions in the liver of 1/11 chickens.  相似文献   

7.
8.
We examined the susceptibility of late-stage chicken embryos to infection with oncogenic serotype 1 Marek's disease virus (MDV 1). Intravenous inoculation of MDV 1 at embryonic day (ED) 16 resulted in significant replication of the virus in embryonic tissues. Within 5 days of virus exposure, pp38 viral antigen (pp38) was detected in embryonic bursae and MDV 1 was isolated by plaque assay from the spleens, thymuses, and bursae of embryos. The pathogenesis of MDV 1 after intravenous inoculation at ED 16 was similar to that in chicks exposed to MDV 1 after hatching. In contrast to the response of the embryo to intravenous inoculation, embryos exposed to MDV 1 by the amniotic route did not develop detectable pp38, nor could the virus be isolated from the embryonic tissues by plaque assay. These results show that the route of inoculation of MDV 1 in the embryos is critical for allowing the virus to come in contact with target cells.  相似文献   

9.
10.
J M Sharma 《Avian diseases》1981,25(4):882-893
Chickens of 2 genetic lines (lines P and N) were inoculated with a pathogenic strain of Marek's disease (MD) virus (MDV) and chronologically examined for disease response and natural killer (NK) cell expression. The NK cell reactivity was assayed in an in vitro cytotoxicity assay in which effector cells from the spleen of test chickens were reacted with 51Cr-labeled LSCC-RP9 target cells. Chickens of line P developed progressive debilitating disease and a high incidence of gross tumors and death. The NK cell reactivity of line-P chickens infected with MDV was significantly lower than that of uninfected control hatchmates. In contrast, NK cell levels were significantly elevated in MDV-inoculated line-N chickens that were resistant to MD and in chickens of lines P or N that had been inoculated with herpesvirus of turkeys (HVT). NK cell levels were also elevated in line P if chickens were vaccinated with HVT before infection with MDV. Inhibition of NK reactivity in susceptible chickens and elevation of reactivity in naturally resistant or vaccinated chickens may indicate a role for the NK cell system in regulating resistance to MD.  相似文献   

11.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

12.
To demonstrate the relationship between tumour development and virus replication, eight specific-pathogen-free pullets of line P2 (Group P; 14 weeks old) and five adult chickens (Group A; 96 weeks old) were inoculated with virulent Marek's disease virus (vMDV). Five chickens of Group P died or were euthanised due to moribund condition following the development of neoplastic lesions between days 53 and 91. On histopathological examination, these lesions were characterised by the proliferation of lymphoid cells of variable size. On analysis by polymerase chain reaction (PCR), the MDV meq gene was detected in Group P from day 21, and it was continuously identified in five chickens until they died or were euthanised. Abnormal signs and histopathological changes were not observed in chickens of Group A. The MDV meq gene was temporarily detected in some chickens of Group A, but it remained almost undetectable throughout the experimental period. In older chickens inoculated with vMDV, the onset of MD lymphoma development tended to be delayed as compared with the young chicks. The relationship between MD lymphoma development and virus replication in older chickens has been suggested. Our data might indicate the underlying existence of an age-related resistance to vMDV challenge.  相似文献   

13.
Bursa- and thymus-dependent functions were examined in Marek's disease (MD)-susceptible normal chickens and in chickens treated with 5 and 16 mg of cyclophosphamide (CY) at the time of hatching. Chickens not exposed to Marek's disease virus (MDV) and treated with CY temporarily lost mitogenic response to concanavalin A but regained full response after 5 weeks. Bursa-dependent functions, such as presence of germinal centers in spleen and cecal tonsils, morphologic features of bursa, and sheep red blood cell antibody response were completely lost in chickens treated with 16 mg of CY and only partly retained in chickens treated with 5 mg of CY. In chickens exposed to MDV, the degree of thymus-dependent spleen cell mitogenic response was directly related to frequency and severity of MD. Chickens treated with 16 mg of CY had a mild mitogenic depression and low frequency and severity of MD lesions, whereas those treated with 5 mg of CY and those not treated had marked mitogenic depression and high frequency and severity of MD. Suppressions of bursa- and thymus-dependent functions by MDV alone were also evident when comparing MDV-exposed and nonexposed chickens. The results also indicate that presence of small, residual amounts of humoral factor(s) may enhance MDV oncogenesis.  相似文献   

14.
The phosphorylated polypeptide (pp)38 of oncogenic Marek's disease (MD) herpesvirus (MDV) is expressed during lytic infections in vivo and in vitro, but its functions have not been fully elucidated. The quail cell line QT-35, latently infected with MDV, was used to generate QTP32 in which pp38 is expressed under control of a tetracycline controlled promoter to examine possible functions of pp38. Induction of pp38 did not influence late MDV genes expression, but it enhanced mitochondrial dehydrogenase activity significantly. Two new pp38 splice variants were found in induced QTP32 cells, in additional in vitro systems and MDV-infected chickens. Differential expression of full-length pp38 and splice variants suggests that the splice variants are important during latency and perhaps transformation. Polypeptides of 40 and 20kDa were detected by Western blot using monoclonal antibody H19. These polypeptides were also produced in DF-1 cells transfected with a pp38 construct in which the splice acceptor sites had been mutated. Our results add important new information to the role of pp38 in the pathogenesis of MD. The data suggest that pp38 and the two newly described splice variants may influence metabolic activity, which may have important consequences for the understanding of latency and tumor development.  相似文献   

15.
山东省某地区鸡马立克氏病疫苗免疫鸡群暴发马立克氏病(MD),为分离得到致病毒株,检测其致病性,采用琼脂扩散试验、细胞培养和间接免疫荧光试验(IFA)等方法从发病鸡的血液及羽髓中分离到一株适应鸡胚成纤维细胞(CEF)生长的马立克氏病病毒。采用PCR方法扩增分离毒株的meq、pp38、132bp重复序列等病毒致病相关基因,所得序列用DNAStar软件与GenBank上登录的参考毒株进行比对分析。结果显示,该分离株SDAU-1的pp38基因与标准强毒序列同源性为100%,132bp重复序列的拷贝数及meq基因的变异均符合MDV强毒株的序列特征。  相似文献   

16.
In a certain area of Shandong province, Marek's disease (MD) occurred in diseased chickens that had been vaccinated by turkey herpesvirus.In order to isolate the virus strain and detect the virus pathogenicity, agar diffusion test, cell culture and indirect immunofluorescence assay (IFA) were used to isolate the Marek's virus from chicken's blood and feather marrow.The isolated strain was adapted to grow in chick embryo fibroblasts (CEF).Genes involved in pathogenesis of MDV, such as meq, pp38 and 132 bp repeat sequence were amplified by PCR.The obtained sequences were compared with that of standard strains published in GenBank by DNAStar software.The results showed that pp38 gene of the SDAU-1 shared homology from 100% with standard virulent sequence.Analysis of 132 bp repeat sequence and meq gene sequences of the viral genome showed that the isolated virus belongs to the highly virulent MDV strains.  相似文献   

17.
OBJECTIVES: To examine the effects of varying the doses of turkey herpesvirus (HVT) vaccine and Marek's disease virus (MDV) challenge at two intervals after vaccination on the protection of chickens against challenge with MDV. DESIGN AND PROCEDURE: Experiment 1, a dose response study, consisted of 11 doses of HVT vaccine administered at hatch followed by challenge with 100 plaque forming units (pfu) of MDV 5 days post vaccination. Experiment 2, a 2 x 6 x 2 factorial design, included two HVT vaccine types, six different doses of HVT vaccine and 50 pfu and 200 pfu of MDV challenge 2 days post vaccination. All chickens were reared up to day 56 post challenge when all survivors were killed humanely. Dead and killed chickens were examined for gross MD tumours. RESULTS: Experiment 1 showed a significant positive linear relationship between dose of HVT vaccine and protective index in chickens challenged 5 days post vaccination. However the range of protective index observed was limited. In Experiment 2 neither HVT vaccine provided significant protection at any dose. There was no significant effect of vaccine type or MDV challenge dose on overall protection against challenge. Chickens challenged with 200 pfu of MDV had significantly higher mortality and MD incidence than those with 50 pfu. CONCLUSIONS: HVT vaccine dose had a significant impact on protective index, but vaccination to challenge interval appeared to have greater impact on the protective efficacy of vaccination. A fourfold increase in challenge dose increased mortality rate and incidence of MD.  相似文献   

18.
The effects of passive immunization with immunoglobulin Y (IgY) on the pathogenesis of Marek's disease (MD) were examined in an experimental line of White Leghorn chickens highly susceptible to MD. Purified IgY with anti-MDV antibody activity, when injected into chicks, delayed the development of MDV viremia and lesions until 9 days postinoculation (PI) with Marek's disease virus (MDV). The blastogenic response of spleen cells to concanavallin-A was depressed at 6 days PI in the birds without passive immunization, whereas it was not totally depressed until 17 days in birds passively immunized with IgY anti-MDV antibody.  相似文献   

19.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

20.
为鉴定鸡羽髓上皮细胞感染马立克氏病病毒(MDV)前后差异表达的蛋白,本研究以MDV强毒GA株人工感染SPF鸡,并通过双向电泳技术进行分析.结果显示:在病毒感染后4 d、7 d、14 d和21 d显著差异表达的蛋白点分别有2个、8个、25个和9个;而通过质谱技术鉴定出29种蛋白质,其中包括能量代谢相关蛋白、增殖和凋亡相关蛋白、细胞骨架蛋白、信号传导蛋白、转录相关蛋白、免疫相关蛋白和其他功能蛋白质.本实验首次对鸡羽髓上皮细胞感染MDV后各时期蛋白表达水平的变化进行研究,鉴定了多种差异表达蛋白质,为进一步揭示MDV与宿主的相互关系、感染性病毒粒子的成熟和致病机制提供了依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号