首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium wilt of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a disease of primary concern for strawberry production in many countries. Crop rotation and anaerobic soil disinfestation (ASD) have gained recent interest for their potential to contribute to management of this disease. Both techniques involve incorporation of organic matter into soil, which may be utilized by strains of Fusarium that are competitive saprophytes. We show that F. oxysporum f. sp. fragariae can colonize strawberry, lettuce, raspberry, and broccoli leaf tissues, which are sources of organic matter generated during crop rotation. This pathogen increased in soil population density during ASD treatments that did not become anaerobic, possibly as a result of growth on the organic amendment. However, significant population decreases were observed after ASD treatment when at least 100,000 cumulative reduced mV hours occurred in a 14-day experiment. Post-ASD abundance of F. oxysporum f. sp. fragariae in soil was negatively correlated with cumulative reduced mV hours. The only treatment that consistently caused disinfestation was exposed to a maximum temperature of 22 °C, which indicates there is potential for developing effective ASD treatments in the cool climates where strawberries are grown. Awareness that F. oxysporum f. sp. fragariae can act as a competitive soil saprophyte should be further investigated for its potential to alter disease outcomes where organic amendments are applied.  相似文献   

2.
Better soil disinfestation methods, such as biological soil disinfestation (BSD), that are environmentally safe are increasingly been developed and used because of rising concerns related to environmental risks. We evaluated the efficacy of soil disinfestation using ethanol to control the fungus Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt of tomato. Survival of bud cells and chlamydospores declined markedly in soil saturated with diluted ethanol solution in the laboratory. In field trials, artificially added nonpathogenic Fusarium oxysporum and indigenous F. oxysporum were both strongly suppressed in soil saturated with 1% ethanol solution; a wheat bran treatment was not as effective. The artificially added fungus was not detected in three of four sites treated with ethanol but was detected in three of four sites amended with wheat bran. Using ethanol in pre-autoclaved soil was not suppressive; thus native microorganisms are essential for the suppression. This ethanol-mediated biological soil disinfestation (Et-BSD) temporarily increased the number of anaerobic bacteria, but the number of fungi and aerobic bacteria was stable. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) analysis revealed slight but apparent differences in bacterial community structures in the soil treated with Et-BSD compared with the structure in soils after other treatments such as water irrigation and in the control soil, which received neither organic amendment nor irrigation after 15 days. Et-BSD is a potentially effective and easy soil disinfestation method, and its impact on native, beneficial microorganisms is moderate.  相似文献   

3.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

4.
The employment of formulateBacillus subtilis as a biocontrol agent successfully controlledFusarium oxysporum f.sp.lycopersici within tomato seedlings (in vivo). B. subtilis was able to proted cortex and vascular tissues of tomato against progression of the wilt pathogen. No changes were observed in tomato tissues due to application ofB. subtilis except for hypertrophy and elongation of cortex tissues, which indicates the production of plant growth hormones byB. subtilis.  相似文献   

5.
Fusarium wilt-resistant Novada carnations responded both to stem inoculation with a conidial suspension ofFusarium oxysporum f. sp.dianthi orF. oxysporum f. sp.lycopersici and to root inoculation by planting in soil infected withF. oxysporum f.sp.dianthi by means of a localization mechanism comprising gel formation in the xylem vessels and hyperplasia of adjacent parenchyma cells. Dye translocation experiments showed that xylem transport was limited by the presence of vascular gels, although wilting did not occur. Overcapacity of the vascular system apparently allowed for sufficient water transport to compensate for local vascular dysfunction. Also, vascular regeneration in the hyperplastic tissue next to occluded xylem vessels created new pathways for water transport to compensate for those lost by occlusion. Regeneration of xylem vessels was eventually followed by regeneration of xylem fibers, xylem parenchyma, cambium, and phloem cells.Early Sam carnations, susceptible to Fusarium wilt, responded to stem inoculation withF. oxysporum f. sp.lycopersici by similar localization of infection and vascular regeneration. Stem inoculation withF. oxysporum f. sp.dianthi, however, resulted in colonization of the xylem vessels followed by lysis of the vascular tissues. Vascular gelation, hyperplasia of parenchyma cells, and vascular regeneration did generally not occur. However, if some hyperplasia occurred in attempted defence, some differentiation of hyperplastic cells into single xylem vessel elements was observed which only rarely resulted in complete vascular regeneration next to colonized xylem. In the absence of hyperplasia, differentiation of medulla parenchyma cells bordering destroyed vascular tissue into xylem vessel elements was even more exceptional. Apparently, vascular regeneration in carnation is a normal defence reaction to fungal invasion.Samenvatting Novada anjers, resistent tegen Fusarium-verwelkingsziekte, reageerden op stengelinoculatie met een conidiënsuspensie vanFusarium oxysporum f.sp.dianthi of vanF. oxysporum f.sp.lycopersici en op wortelinoculatie door te planten in metF. oxysporumf.sp.dianthi besmette grond met een lokalisatiemechanisme dat onder meer bestond uit vorming van gommen in de houtvaten en hyperplasie van naburige parenchymcellen. Uit proeven over kleurstoftransport bleek dat de sapstroom door de gomvorming beperkt werd, hoewel dit geen verwelkingssymptomen veroorzaakte. Overcapaciteit van het vaatstelsel zorgde kennelijk voor voldoende compensatie aan watertransport om plaatselijke verstoring van de sapstroom op te vangen. Daarnaast werd het verlies aan functionele houtvaten ook opgevangen door vaatweefselregeneratie in het hyperplastische weefsel grenzend aan door gommen verstopte houtvaten. Na verloop van tijd werden behalve houtvaten ook houtvezels, houtparenchymcellen, cambium- en floeemcellen geregenereerd.Early Sam anjers, vatbaar voor Fusarium-verwelkingsziekte, reageerden op stengelinoculatie metF. oxysporum f. sp.lycopersici met eenzelfde lokalisatiemechanisme en ook met vaatweefselregeneratie. Stengelinoculatie metF. oxysporum f.sp.dianthi echter had kolonisatie en vervolgens lysis van het vaatweefsel tot gevolg. Meestal trad er geen gomvorming, hyperplasie van parenchymcellen of vaatweefselregeneratie op. Als echter bij pogingen tot afweer toch enige hyperplasie optrad, bleken sommige hyperplastische cellen wel tot houtvatelementen te differentieren. Dit leidde echter maar zelden tot totale vaatweefselregeneratie parallel aan het gekoloniseerde vaatweefsel. In afwezigheid van hyperplasie differentieerden mergparenchymcellen vlak naast lyserend vaatweefsel slechts bij hoge uitzondering tot houtvatelementen. Vaatweefselregeneratie bij anjer is kennelijk een gewone afweerreactie op besmetting met pathogene schimmels.  相似文献   

6.
The lipids metabolism of tomato and bean plants during biological control of wilt pathogens (Fusarium oxysporum f.sp.lycopersici andF. oxysporum f.sp.phaseoli, respectively) byBacillus subtilis was investigated. The interaction of wilt pathogens with both tomato and bean caused an imbalance and drastic reduction in total lipids, triacylglycerol, sterol and all phospholipd fractions except phosphatidic acid. The application of a formulated biocontrol agent,B. subtilis, eliminated the detrimental effect of both wilt pathogens and consequently prevented catabolism of lipid fractions in both tomato and bean. Moreover, the changes in the lipid fractions as a sensitive monitor for biocontrol of wilt diseases suggest a positive correlation between the application ofB. subtilis and improvement in the host metabolism towards anabolism. http://www.phytoparasitica.org posting Sept. 20, 2006.  相似文献   

7.
四季豆枯萎病病原鉴定及防治   总被引:2,自引:0,他引:2  
从南宁市郊11个病区采集的四季豆枯萎病株标样,经分离培养鉴定和致病性测定,证明其病原菌为尖孢镰刀菌菜豆专化型(Fusarium oxysporum f. sp. phaseoli Kend & Syd)。此病在南宁于4月上中旬四季豆初花期开始发生,5月中下旬盛花至结荚期为发病高峰期。用滤纸碟法进行药效试验的结果,40%灭病威300-500倍液的抑菌圈最大,田间灌根防治也有一定效果。可用种子重量的0.5%多菌灵可湿性粉拌种。品种间抗病性有显著差异,秋抗19号和秋抗6号较抗病。  相似文献   

8.
The behaviour of Fusarium oxysporum f.sp. lycopersici (Fol) and the effectiveness of the microbial control agent Trichoderma asperellum strain T34 were examined in hydroponically grown tomato plants under five ammonium/nitrate ratios. The results showed that disease severity was reduced by the action of T34 under increasing concentrations of ammonia. Furthermore, rhizosphere F. oxysporum populations decreased with T34 application. The presence of T34 augmented leaf nitrogen concentration in treatments infested with Fol. In addition, T34 application reduced iron concentration in tomato leaves at high ammonium/nitrate ratios and reduced the severity of Fusarium wilt at high iron and nitrogen leaf concentrations.  相似文献   

9.
A study was conducted in two greenhouses with a history of Fusarium crown and root rot (Fusarium oxysporum f.sp.radicis-lycopersici, Forl) and root-knot nematodes (Meloidogyne javanica andM. incognita). During the 2005–06 growing season, the effectiveness of soil disinfestation by solarization in combination with low doses of metham-sodium (500, 750, 1000 and 1250l ha−1) or dazomet (400 g ha−1), was tested against soilborne pathogens and nematodes in an attempt to find a suitable alternative to methyl bromide, which is soon to be phased out. Solarization alone was not effective in the greenhouse with a high incidence ofForl. In the greenhouse with a low level ofForl, all the treatments tested reduced disease incidence, and were therefore considered to be applicable for soil disinfestation. In addition, root-knot nematode density decreased with all the treatments tested in both of the greenhouses.  相似文献   

10.
Fusarium wilt is now a major disease of carnation crops worldwide. Methyl bromide, which is used to remedy it, is environmentally unsafe. An alternative approach integrated into biological control is to grow crops in suppressive media. Suppressiveness of seven plant growth media to Fusarium oxysporum f. sp. dianthi was evaluated in bioassays with carnation (Dianthus cariophyllus) cv. Medea. These media were: (1) grape marc compost, (2) cork compost, (3) olive oil husk + cotton gin trash composted and mixed with rice husk, (4) spent mushroom compost mixed with peat, (5) coir fibre, (6) light peat and (7) vermiculite. In order to look for carnation Fusarium wilt suppressiveness indicators, growth medium pH and β-glucosidase activity were evaluated. Furthermore, F. oxysporum populations were measured in plant growth media at the beginning and end of bioassays. The compost media showed a range of suppressiveness in comparison with peat. Grape marc compost was the most effective plant growth medium in suppressing carnation Fusarium wilt. On the other hand coir fibre, peat and vermiculite were conducive for this disease. β-glucosidase activity and pH were positively correlated with disease severity as in other reports for tomato. Therefore, these two parameters are good indicators for carnation Fusarium wilt suppressiveness, and possibly for other F. oxysporum pathosystems. All composts showed similar F. oxysporum populations at the end of the bioassays to peat and vermiculite.  相似文献   

11.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

12.
The effect of root-knot nematode (RKN) (Meloidogyne incognita) onVerticillium dahliae andFusarium oxysporum f.sp.vasinfectum in cotton (Gossypium hirsutum) was investigated. Two different inoculation methods were used, one in which inoculum was added to the soil, so that nematode and fungal inoculum were in close proximity; the other, inoculation into the stem, whereby the two inocula were spatially separated. Invasion of the roots by RKN enhanced disease severity, as measured by the height of vascular browning in the stem, following inoculation with either wilt pathogen. The effect of RKN on Fusarium wilt was more pronounced than that on Verticillium wilt. Nematode-enhanced infection byF. oxysporum is a well known effect but there are few reports of enhanced infection byVerticillium due to RKN. Relative resistance of a number of cotton cultivars to both wilt diseases, as measured by height of vascular browning, was similar to the known field performance of the cultivars. The use of vascular browning as an estimate of disease severity was therefore validated. http://www.phytoparasitica.org posting Feb. 3, 2003.  相似文献   

13.
Five primer/probe sets to identify the tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL), and its three races selectively were designed based on the rDNA-intergenic spacer and avirulence genes. Real-time PCR using genomic DNA from mycelia and soil DNA with the primer/probe sets allowed the successful identification of FOL and its races.  相似文献   

14.
Fusarium wilt of basil (Ocimum basilicum), caused byFusarium oxysporum f.sp.basilici, is reported for the first time in Greece. Foliage inoculation of young plants resulted in a downward movement of the pathogen to the crown and roots and 20–30% plant mortality. Of 14 commercial basil cultivars evaluated for possible disease resistance using young plants, six out of eight large-leaved cultivars were found resistant, while all six small-leaved ones were susceptible. http://www.phytoparasitica.org posting Feb. 23, 2004.  相似文献   

15.
Five experimental trials were carried out to test different biological control agents against Fusarium wilt of lettuce, cause byFusarium oxysporum f.sp.lactucae. In the presence of a very high disease incidence, the best results in terms of disease control as well as increased growth response were shown byTrichoderma harzianum T 22 (RootShield), which, at 3 gl −1 of substrate, provided very consistent results.F. oxysporum IF 23 gave good disease control but in two out of five trials reduced the biomass produced. Less consistent, but still significant results were provided byF oxysporium MSA 25, at 3 gl −1 of substrate, and byTrichoderma viride TV 1. The twoF. oxysporum agents Fo 251/2 and Fo 47 and the mixture ofT. harzianum + T. viride (Remedier) partially reduced disease incidence but were less effective than the above mentioned. Less interesting results were offered byStreptomyces griseoviridis (Mycostop). The results obtained show that biological control can play a role in the management of Fusarium wilt of lettuce.  相似文献   

16.
This study concerned a new disease detected in 1997 in southeastern Spain — Fusarium wilt in basil (Ocimum basilicum L.), caused byFusarium oxysporum f.sp.basilici. Its importance was evaluated at two locations in the Almería area, where 14% of the plants presented symptoms of the disease after 4 months of cropping. The search for sources of the disease inoculum was centered on the health of the seeds and the polypropylene trays that were reused for plant production. Analysis of four lots of seeds from Germany and Italy showed that two of them harboredF. oxysporum f.sp.basilici. This finding was confirmed by the analysis of seeds collected from diseased plants. Furthermore, analysis of three reused trays revealed the presence of the pathogen on them and it was concluded that the trays acted as the source of dispersion of the mycosis. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

17.
Forms ofFusarium oxysporum specific on hosts other than tomato induce in this plant greater initial increases of the phenols content than the pathogenic f. sp.lycopersici. Mixed inoculations of f. sp.lycopersici and f. sp.dianthi are on the contrary no more effective in inducing the phenol accumulation 24 h after the infection than f. sp.lycopersici alone. This observation suggests that the pathogen can suppress the phenolic response that is typical of the incompatible combinations.Samenvatting Vormen vanFusarium oxysporum welke pathogeen zijn voor andere planten dan de tomaat induceren in deze plant aanvankelijk een grotere toename van het fenolgehalte dan de pathogene f. sp.lycopersici. Inoculaties met een gemengd inoculum van de f. sp.lycopersici en f. sp.dianthi hebben daarentegen geen groter effect op de toename van het fenolgehalte 24 uur na infectie dan de inoculaties met f. sp.lycopersici alleen. Verondersteld wordt dat het pathogeen de toename van het fenolgehalte, dat typerend is voor de incompatibele combinatie, kan onderdrukken.  相似文献   

18.
Fungal strain Kyu-W63 from a wheat leaf suppressed the development of wheat powdery mildew caused by Blumeria graminis f. sp. tritici. Nuclear magnetic resonance analysis revealed that Kyu-W63 produced two volatile substances: 5-pentyl-2-furaldehyde and 5-(4-pentenyl)-2-furaldehyde. Although the two are known to be nematicidal substances, the antifungal activity of 5-(4-pentenyl)-2-furaldehyde was first confirmed in the present study. Culture experiments revealed that synthesized 5-pentyl-2-furaldehyde had antifungal activity against three other pathogens – Fusarium oxysporum f. sp. lycopersici, Colletotrichum fragariae, Botrytis cinerea – with a minimum inhibitory concentration of 2–4µg/ml. The two fractionated substances were also inhibitory against C. fragariae. Because the absence of spores in strain Kyu-W63 made its identification difficult, the sequence in the rDNA internal transcribed spacer (ITS) region of Kyu-W63 was compared with that of Irpex lacteus, which is known to produce these substances. Strain Kyu-W63 completely agreed with I. lacteus in terms of the ITS sequences, so strain Kyu-W63 was inferred to be I. lacteus. Two other strains of I. lacteus tested also produced the two furaldehydes and suppressed the growth of F. oxysporum f. sp. lycopersici. Both Kyu-W63 and additional strains produced the two furaldehydes on potato dextrose agar but not on water agar.The nucleotide sequence data reported are available in the DDBJ databases under accession numbers AB079264, AB079265, AB079266, and AB079267  相似文献   

19.
The use of Brassica crops as green manure in the so-called biofumigation treatment has been successfully exploited for the management of soilborne pathogens and is gaining interest particularly in the case of less intensive agricultural systems. A study was undertaken to investigate possible negative side-effects of biofumigation in order to prevent possible damage caused by wilt pathogens able to attack both plants used for biofumigation as well as agricultural crops. To do so, firstly the response of different Brassicas, including some used in biofumigation, to the formae speciales of Fusarium oxysporum known for being pathogenic on Brassica crops was evaluated. Secondly, the effect of green manure treatments on yield, quality of crops, and inoculum densities, infection and survival of Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani was evaluated. In the second part of the work, four Brassica crops, selected for their response (susceptibility or resistance) to F. oxysporum f. sp. conglutinans and to F. oxysporum f. sp. raphani were evaluated in order to determine their response to the two pathogens during subsequent crops grown in soil where plants were incorporated as green manure into the soil at the end of each cycle. Moreover, the dynamics of the populations of F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani in the soil after several biofumigation cycles was studied. Many of the Brassica crops used for biofumigation tested were susceptible to F. oxysporum f. sp. conglutinans and or to F. oxysporum f. sp. raphani. Green manure treatment, carried out by growing nine cycles of biocidal plants, with a short crop cycle of 30–35 days, did not reduce Fusarium wilts on susceptible Brassica hosts. The population of the pathogen was partially increased as a result of the incorporation of tissues of the susceptible plants. When Brassica crops grown were resistant to the two F. oxysporum pathogens used for soil infestation, green manure simulation did inhibit both pathogens, thus confirming its biocidal activity. The results obtained under our experimental conditions show that biofumigation treatment is not applicable for soil disinfestation on crops susceptible to the same formae speciales of F. oxysporum affecting Brassica species used for biofumigation. Brassica crops resistant to Fusarium yellows should be grown where biofumigation is applied. Moreover, alternation of crops used for biofumigation should be encouraged.  相似文献   

20.
An hexane extract from roots of Black Boo Stammi, a cultivar of date palm, resistant toFusarium oxysporum f. sp.albedinis, contained substances which inhibited the spore germination and the growth of the germ tubes of the three isolates of the pathogen that were tested. Extract from roots of Jihel, a susceptible cultivar, lacked these substances.Samenvatting In een hexaanextract van wortels van de dadelpalm, cv. Black Boo Stammi die resistent is tegen de Bayoudziekte, bevonden zich stoffen die de sporekieming en de groei van kiembuizen onderdrukken. Dit gold voor alle drie isolaten vanFusarium oxysporum f. sp.albedinis, die werden getoetst. In extracten van de vatbare cultivar Jihel werden de kieming en de groei niet geremd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号