首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three 10-d collection periods (April 4 to 14, early April, EApr; April 23 to May 3, late April, LApr; May 10 to 20, 1984, mid-May, MMay) were conducted to evaluate effects of no supplement (C), .5 kg-head-1.d-1 (as-fed basis) supplemental grain (steam-flaked milo, G) or G plus 170 mg monensin.head-1.d-1 (M) on forage intake and digestion by 12 ruminally cannulated beef steers (four/treatment; avg initially BW = 393 kg) grazing irrigated winter wheat pasture. Ruminal pH was greater (P less than .01) for M than for C or G during EApr but was not altered by treatments in LApr or MMay. Compared with C, ruminal NH3 was decreased (P less than .10) by G and M (5 h after supplementation) in EApr, decreased (P less than .05) by G (2h) and increased (P less than .05) by M (8 h) in LApr and decreased (P less than .10) by G (-1h) in MMay. Treatments had little influence on total VFA concentrations or on molar proportions of acetate and propionate. Butyrate molar proportion was decreased (P less than .10) by M during EApr and LApr, but not during MMay. Monensin increased (P less than .05) fluid passage rate compared with C and G in EApr but not in other periods, Particulate passage measurements did not differ (P greater than .10) among treatments within periods. Forage DM intake was not influenced (P greater than .10) by supplementation during any period. Extent of in situ forage DM disappearance was greater (P less than .10) for M than for C or G during EApr (12 and 30 h of incubation) but was not different (P greater than .10) in LApr or MMay. Incidence of frothy bloat was decreased (P less than .05) by M during EApr; this reduction may have been related to effects of M on ruminal pH, forage digestion and fluid passage.  相似文献   

2.
Twelve ruminally cannulated steers (average initial BW 357 kg) were allotted to four treatments (three steers per treatment) in a replicated 4 x 4 Latin square design with 21-d periods (12 d for adaptation and 9 d for collection) to compare the effects of protein supplements that differed in percentage of CP and feeding level on low-quality forage utilization. Treatments were 1) control (C), ad libitum access to 5.6% CP prairie hay, 2) C +600 g of DM.steer-1.d-1 of a 43% CP supplement based on cottonseed meal (PS), 3) C + 1,200 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (GS), and 4) C + 600 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (LS). Ruminal total VFA concentrations were increased 8% (P less than .07) by PS vs GS 1 h after supplementation. Among supplemented steers, ruminal acetate (mol/100 mol) was decreased 1.2 mol/100 (P less than .03) by GS vs PS and LS; however, supplementation did not affect (P greater than .10) acetate proportions compared with C. Neither propionate nor butyrate was affected (P greater than .10) by supplementation, but among supplemented steers, butyrate proportions were 8% greater (P less than .03) for GS than for PS and 5% less (P less than .10) for LS than for the average of GS and PS. Ruminal pH did not differ (P greater than .10) among treatments. Ruminal ammonia concentrations were increased 1.4 to 4.8 mg/100 mL (P less than .07) by supplementation and typically were less for LS than for PS and GS at most sampling times. Prairie hay DMI (average = 16.3 g/kg BW) was not affected (P greater than .10) by supplementation. Fluid dilution rate was 8% faster (P less than .01) when steers were supplemented than when they were not fed supplement, and fluid dilution rate was increased 4% (P less than .04) by GS compared with PS. Particulate digesta passage rate was not affected (P greater than .10) by treatment, but total tract retention time was decreased (P less than .01) 10% by supplementation. Extent and rate of prairie hay NDF digestion in situ were not greatly affected by supplementation, but in situ disappearance of supplement N was 6 to 10 percentage units less (P less than .06) for GS than for PS and 2 to 6 percentage units less for LS than for the average of PS and GS supplements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Supplemental corn grain for steers grazing native rangeland during summer   总被引:1,自引:0,他引:1  
Effects of supplemental corn grain on forage OM intake (FOMI), digesta kinetics, ruminal fermentation patterns, in vitro OM digestibility (IVOMD), and in situ OM digestion were examined in steers grazing summer blue grama rangeland in northeastern New Mexico during July and August 1988. Sixteen ruminally cannulated steers (average BW 507 kg) were allotted to four treatments and individually fed whole-shelled corn at 0, .2, .4, and .6% of BW in a complete random design with repeated measurements over time. Forage OMI decreased linearly (P = .02) with increasing levels of supplemental corn; however, a tendency toward greater FOMI, as well as faster particulate and fluid passage, was observed when corn was fed at .2% of BW compared with 0, .4, or .6% of BW. Molar proportions of butyrate increased (P less than .10) but molar proportions of acetate and propionate, ruminal pH, and total VFA concentration did not change (P greater than .10) with added corn. Added corn linearly decreased (P less than .10) ruminal ammonia N concentrations in July, but patterns were inconsistent in August. A cubic response (P less than .05) for in situ OM disappearance with added corn was noted after 24, 72, and 96 h of incubation. Supplemental whole corn fed at .2% of BW had no detrimental effects and tended to increase FOMI. However, supplemental corn fed at .4 or .6% of BW decreased FOMI compared with 0 or .2% of BW.  相似文献   

4.
Two experiments were conducted to compare the effects of a progesterone-estradiol implant (PEI) with no implant (NI) and 20 g of copper oxide needles (CuON) with no CuON on grazing, subsequent feedlot performance, and selected serum constituents of steers. In Exp. 1, 114 Limousin crossbred yearling steers (317 kg average initial BW) were stocked continuously on Acremonium coenophialum-infected tall fescue (Festuca arundinacea Schreb.)-ladino clover (Trifolium repens L.) pastures (C) or were rotated to bermuda grass (Cynodon dactylon [L.] Pers.) during summer months (R) of two consecutive years. Implant and copper treatments were applied within pasture. Blood samples were collected four times during each grazing season. Continuously stocked steers had greater (P less than .05) grazing gain, less (P less than .10) feedlot gain, and heavier (P less than .05) carcass weights than R steers did. Implanted steers had greater (P less than .05) pasture but lesser (P less than .05) feedlot gains than did NI steers. Prolactin concentrations were greater (P less than .05) from R than from C steers in late summer 1988. Ceruloplasmin was greater (P less than .01) with CuON than without on the last three and last two sampling dates in 1988 and 1989, respectively. In Exp. 2, blood samples were collected twice from 40 mixed-breed steers (283 kg average initial BW) receiving the same implant and copper treatments as in Exp. 1 and grazing infected fescue for one season. Serum ceruloplasmin and copper concentrations were increased (P less than .01) by CuON, but other measurements did not differ among treatments. Summer grazing of bermuda grass increased serum copper, ceruloplasmin, and prolactin but decreased grazing performance. Implanting increased grazing performance. Copper oxide needles increased serum ceruloplasmin and copper concentrations but did not affect steer performance.  相似文献   

5.
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.  相似文献   

6.
Four multicannulated Holstein steers (initial BW 424 +/- 16 kg) were used in a 4 x 4 Latin square to determine the influence of protein supplementation on forage intake, site and extent of digestion, and nutrient flow in steers consuming dormant bluestem-range forage (2.3% CP). Treatments were 1) control, no supplement; 2) 1.8 kg of low-protein supplement, 12.8% CP (Low-CP); 3) 1.8 kg of moderate-protein supplement, 27.1% CP (Mod-CP); and 4) 2.7 kg of dehydrated alfalfa pellets, 17.5% CP (Dehy). The Dehy supplement was fed to provide the same amount of CP/d as Mod-CP, and all supplements provided similar amounts of ME/d. Forage DMI was increased (P less than .05) by feeding Mod-CP and Dehy. Ruminal OM digestibility was 39% greater (P less than .05) for the Mod-CP and Dehy supplementations than for the Low-CP supplementation and control. Ruminal CP digestibility was negative for all treatments, and control (-326%) was less (P less than .05) than supplemented treatments (average -27%). Total tract OM digestibility was greatest (P less than .10) for steers fed Mod-CP and least for control steers; Low-CP and Dehy steers were intermediate. Total tract NDF digestibility tended (P = .15) to be less with Low-CP than with Mod-CP and Dehy. Duodenal N flow was greater (P less than .05) with Mod-CP and Dehy than with Low-CP and control. In summary, supplementation with Mod-CP increased forage intake, digestion, and duodenal N flow compared with Low-CP or control; however, the response was similar when Mod-CP and Dehy supplements were fed to provide equivalent amounts of CP and ME daily.  相似文献   

7.
Twelve ruminally cannulated steers (Angus x Holstein; average initial BW = 533 +/- 3.28 kg) were randomly allotted to one of three treatments (four steers/treatment) to evaluate the use of pretanned leather shavings as a component of a protein supplement for steers grazing dormant intermediate wheatgrass (Thinopyrum intermedium Host). Steers were allotted to one of three treatments: 1) no supplement (control); 2) supplementation intraruminally at 0700 with soybean meal at .2% of BW (as-fed basis); 3) supplementation intraruminally with soybean meal and pretanned leather shavings (17:8 ratio, respectively) at .16% of BW (as-fed basis). Supplements were formulated so that intakes were isonitrogenous and were placed intraruminally once daily (0700). Sampling periods were conducted February 3 to 16 and February 17 to March 5, 1995. In situ organic matter disappearance of the soybean meal supplement was greater (P > .05) than that of the leather shavings supplement at all incubation times (1, 3, 6, 9, 12, 24, and 48 h). Data suggested that pretanned leather shavings within the leather shavings supplement were only 25% degradable within the rumen. Forage OM intake (control = 12.7, soybean meal = 12.7, and leather shavings = 13.4 g/kg of BW), grazing time, and grazing efficiency were not altered (P > .10) by supplementation or type of supplement provided but did increase between the February and March samplings. Total intake was increased (P = .09) with supplementation and reflected the addition of the protein supplements. Particulate and fluid passage estimates were unaffected (P > .10) by the supplements; however, gastrointestinal fill increased (P = .01) between the February and March samplings. Ruminal pH was lower (P = .04) and ruminal NH3 N concentration was greater (P = .02) for supplemented steers than for control steers, and supplementation treatments did not differ (P > .10). Total VFA concentrations were increased (P = .01) by supplementation but were not affected by type of supplement provided (P > .10). Ruminal molar proportions of acetate and propionate and the ratio of these two VFA did not differ (P > .10) between supplementation types. Nonetheless, supplementation increased molar proportions of butyrate (P = .04), valerate (P = .02), and isovalerate (P = .05), and leather shavings supplementation increased (P = .10) isobutyrate proportions over those in steers supplemented with soybean meal. Combining pretanned leather shavings with soybean meal seemed to have no deleterious effects on forage intake, digesta passage, grazing behavior, or ruminal fermentation and seemed to provide effects similar to those of soybean meal alone.  相似文献   

8.
Fifty fall-weaned heifers with initial weights of 209 kg (yr 1) and 222 kg (yr 2) were used to determine effects of lasalocid on weight gains, forage intake and ruminal fermentation of stocker cattle grazing winter wheat pasture. The heifers grazed a single wheat pasture for about 100 d each year, and were individually fed 1.06 kg of supplement (6 d/wk) pro-rated to supply 0, 100 or 200 mg lasalocid.head-1.d-1. Also, eight mature Hereford steers with large rumen cannula were used to evaluate further effects of lasalocid (0 or 300 mg) on ruminal fermentation during two grazing periods (immature and mature wheat forage) of yr 2 and an additional third year. Daily gains of heifers fed 200 mg lasalocid/d were .11 kg greater (P less than .05) than those of heifers fed 0 or 100 mg lasalocid/d. One hundred milligrams lasalocid did not increase weight gains. Digestibilities of forage dry matter (DM) and organic matter (OM) were similar (P greater than .05) among treatments, and lasalocid did not affect (P greater than .10) forage intake. Ruminal ammonia concentrations (10.57, 15.22 and 17.81 mg/dl +/- 1.71) were increased (P less than .05) by both levels of lasalocid in yr 1, but differences among treatment means of 8.32, 11.95 and 11.66 (SE +/- 1.44) were not significant in yr 2. Lasalocid did not consistently affect total volatile fatty acids concentrations. The acetic:propionic acid ratios in heifers were not different (P greater than .05) among treatments, but were decreased (P less than .10) by lasalocid in cannulated steers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

10.
Sixty medium-framed Hereford steers averaging 243 kg were used in an experiment including a growing period (28 wk) and a finishing period ending when the animals had approximately 4 to 10 mm of fat thickness (Canadian grade A1). Steers were assigned randomly to a 2 x 3 factorial arrangement of treatments for 28 wk (growing period). From the end of the growing period until slaughter, all steers received the same diet to study the residual effect of treatments fed during growth. Treatments during the growing phase consisted of two types of forage conservation (silage or hay) and three levels of protein supplement (0, 200 g of fish meal plus 43 g of urea, or 400 g of fish meal). There was an interaction (P less than .05) between forage conservation and protein supplementation for BW gain during the growing phase; the greatest gain was by steers fed silage and 400 g of fish meal (.87 kg/d). There was no difference in BW gain among animals fed the hay diets, which averaged .75 kg/d. Body weight gain during the finishing phase, and for the overall experiment, was affected only by forage conservation; greater gains were made by steers fed silage during the growth phase. Protein supplementation did not affect performance in either the finishing phase or overall. Carcass composition did not differ among treatments, and time spent on the finishing phase tended to be less (P less than .08) for steers fed silage plus 400 g of fish meal during the growth phase.  相似文献   

11.
Effects of advancing forage maturity and drought-induced summer dormancy on site and extent of digestion and microbial protein synthesis in beef steers grazing native blue grama rangeland were evaluated in four sampling periods. Five steers (avg initial wt 227 kg) fitted with ruminal, duodenal and ileal cannulae and three steers cannulated at the esophagus freely grazed a 12-ha study pasture. Sampling periods lasted 11 d and started June 2, which was during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Dietary N content was lower (P less than .05) in ESD and LSD than in EGS and LGS. Neutral detergent fiber (NDF) content was lower (P less than .05) in EGS than in other sampling periods. Ruminal organic matter (OM) digestion was lower (P less than .05) in ESD than in EGS, probably because of increased dietary NDF and lower N content. Ruminal OM digestion was greater (P less than .05) in LSD and LGS than in ESD because of increased fiber digestion. Neutral detergent fiber and acid detergent fiber (ADF) digestion occurring in the rumen was greater (P less than .05) in LSD and LGS than in EGS and ESD. Organic matter digestion in the small intestine and OM, NDF and ADF digestion in the hindgut were similar for all sampling periods. Over 90% of the fiber digestion occurred ruminally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

13.
Effects of grazing low-endophyte (Acremonium coenophialum Morgan-Jones and Gams, less than 1% infection) Johnstone (J) or high-endophyte (60% infection) Kentucky-31 (K) tall fescue (Festuca arundinacea Schreb.) on grazing behavior and voluntary intake were studied. Six Angus steers (average initial BW = 326 kg) grazed 1.21-ha plots of each forage cultivar (three steers per cultivar) in four 28-d periods beginning May 27. Daytime observations (0630 until 2130) revealed that J steers spent more (P less than .10) time grazing and lying down and took more (P less than .05) prehensile bites than K steers did; conversely, steers grazing K spent more (P less than .10) time standing and idling than J steers did. Idling time showed a forage x period interaction (P less than .10). Mean OM bite size (grams per bite) was not affected (P greater than .10) by forage but differed (P less than .10) among periods. Limited nighttime observations (2130 until 0630) revealed no effects (P greater than .10) of forage on grazing time or number of prehensile bites taken. Voluntary intakes of OM and NDF did not differ (P greater than .10) between steers grazing J and K; however, a forage x period interaction (P less than .10) existed such that, during Period 1, steers grazing J had greater (P less than .01) OM and NDF intakes than did steers grazing K. These data suggest that cattle grazing endophyte-infected tall fescue display altered daytime grazing behavior and that reduction of voluntary intake attributable to endophyte infection may be less severe under free-grazing than has been reported for controlled environmental conditions.  相似文献   

14.
Three experiments were conducted to compare soybean meal/sorghum grain (SBM/SG), alfalfa hay or dehydrated alfalfa pellets (DEHY) as supplemental protein sources for beef cattle grazing dormant range forage. In Exp. 1 (35-d digestion study), 16 ruminally cannulated steers were stratified by weight (average BW 259 kg) and assigned randomly within stratification to: 1) control, no supplement; 2) SBM/SG (25% CP) fed at .48% BW; 3) alfalfa hay (17% CP) fed at .70% BW; or 4) DEHY (17.4% CP) fed at .67% BW. Steers receiving protein supplements displayed at least a twofold increase in forage intake (P less than .10). In addition, steers supplemented with DEHY consumed approximately 15% more forage (P less than .10) than SBM/SG- or alfalfa hay-supplemented steers. Digestible DM intake (kg/d), however, was similar between alfalfa hay- and DEHY-supplemented steers and 20% greater (P less than .10) than for SBM/SG-supplemented steers. In Exp. 2, 82 mature, nonlactating Hereford x Angus cows (average BW 489 kg) were assigned randomly to SBM/SG, alfalfa hay or DEHY supplement treatments, which were replicated in three pastures. Cows supplemented with DEHY gained more weight (P less than .05) during the first 84 d of supplementation and displayed the least amount of weight loss at calving (d 127; P less than .05) and just prior to breeding (P less than .10). In contrast, calving interval (361 d) and pregnancy rate (94%) were unaffected (P greater than .10) by dam's previous supplemental treatment. In Exp. 3, one block (pasture) of cows from Exp. 2 was selected at random and grazing behavior was monitored during week-long periods in January and February. A treatment X time interaction (P less than .05) occurred for total time spent grazing; treatments did not differ in January, but cows supplemented with alfalfa hay spent less time grazing in the February grazing period. In conclusion, DEHY and alfalfa hay appear to be at least as effective as SBM/SG as a supplemental protein source for pregnant grazing cows when supplements are fed on an equal CP and ME basis.  相似文献   

15.
Sixty mixed British breed yearling steers (237 kg) were used each year for 2 yr to study the effects of rate of gain during the winter on subsequent pasture and finishing performance. Winter gains of .28, .38 and .50 kg/d (P less than .05) were established for the low, medium and high gain treatments, respectively. Daily gain of steers on pasture was reduced (P less than .01) 81 g for each 100-g increase in winter daily gain. No differences in BW were observed among the treatment groups after grazing summer pasture. Wintering performance did not affect finishing performance. Daily gains during the finishing period increased slightly as pasture gain decreased due to increased feed intake, but efficiency was not altered. These data suggest that within this range of ADG during the winter and under the conditions of this study, it was not beneficial to winter cattle for an ADG more than .28 kg/d.  相似文献   

16.
Two experiments were conducted using 48 Angus x Angus-Hereford steers in each experiment to determine the effect of previous winter grazing BW gain on jugular concentrations of metabolites and hormones during feedlot finishing. In each experiment, steers were randomly assigned to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) with 0.91 kg/d of a 41% CP (DM basis) supplement. Steers grazed for 120 or 144 d in Exp. 1 and 2, respectively. Plasma and serum were collected from all steers before placement into a feedlot, and six or seven times during finishing in Exp. 1 and 2, respectively. In Exp. 1, before steers entered the feedlot, concentrations of insulin, triiodothyronine (T3), and thyroxine (T4) were greater (P < 0.05) in HGW than in LGW or NR steers, and concentrations of IGF-I and plasma urea-N were greater (P < 0.05) in steers that grazed wheat pasture than in NR steers. In Exp. 2, concentrations of glucose, T3, T4, and IGF-I were greater (P < 0.05) in steers that grazed wheat pasture than NR steers. In Exp. 1 (P < 0.19) and 2 (P < 0.86), glucose concentration did not differ among treatments during finishing. In Exp. 1, insulin concentration across days on feed was greater for HGW than LGW steers, which were greater than for NR steers (treatment x day interaction, P < 0.03). In Exp. 2, insulin concentration increased (P < 0.001) as days on feed increased. Concentrations of IGF-I were greater in steers that had grazed wheat pasture, whereas the increase in IGF-I with increasing days on feed was greater for NR steers (treatment x day interaction, P < 0.003). Concentrations of T3 and T4 during finishing were greater (P < 0.001) in HGW and LGW than in NR steers in Exp. 1. In Exp. 2, T4 concentration also differed (P < 0.009) among treatments (HGW > LGW > NR). In Exp. 2, final concentration of glucose was greater (P < 0.01) in NR than in HGW and LGW steers, and serum insulin concentration was greater (P < 0.04) in NR than LGW steers. Final concentrations of T3 (P < 0.01) and T4 (P < 0.004) were greater in NR than in HGW steers. Our data show that previous BW gain can affect blood metabolites and hormones in steers entering the feedlot. However, lower concentrations of T3, T4, and IGF-I in steers when they entered the feedlot did not inhibit the growth response of previously restricted steers.  相似文献   

17.
Grazing trials were conducted for 2 yr using weanling Brahman crossbred beef steers to evaluate graded levels of salinomycin (0, 50, 100 or 150 mg. head-1.d-1) for 161 d and to evaluate salinomycin in a free-choice mineral supplement (99 d). The 40 and 48 steers in trials 1 and 2 had average initial weights of 198 and 285 kg, respectively. In trial 1, steers were group-fed to consume either 0, 50, 100 or 150 mg of salinomycin.head-1.d-1 in .9 kg ground corn while grazing bermudagrass pastures. Both linear (P less than .01) and quadratic (P less than .05) effects were observed for steer performance as salinomycin level increased from 0 to 150 mg.head-1.d-1. Linear increases (P less than .01) in ruminal NH3-N (mg/100 ml) and in the molar proportion of propionate and decreases (P less than .01) in butyrate and acetate/propionate were detected. In trial 2, mineral supplements with and without salinomycin were fed free-choice to steers on bermudagrass pasture. The mean salinomycin intake of 38 mg.head-1.d-1 was lower than anticipated as a result of the instability of salinomycin in the mineral supplement and the slightly lower intake (65 g/d) than anticipated (75 g/d). Performance of steers was not influenced by salinomycin supplementation in trial 2. The ionophore salinomycin at intakes over 50 mg.head-1.d-1 appears to increase the performance of steers grazing bermudagrass pasture.  相似文献   

18.
Ten Holstein steers (141 kg) were used in two 5 X 5 Latin-square experiments conducted simultaneously to determine the effects of offering different levels and types of feeds with endophyte-infected fescue given ad libitum. In Exp. 1, steers were given ad libitum access to infected fescue hay in the afternoon; in the morning fescue was given ad libitum (basal) or bermudagrass or clover hays were fed at .5 or 1.0% of body weight (BW). Supplementation did not affect total dry matter intake (P greater than .10), but supplementation at 1.0% of BW yielded total intake greater than supplementation at .5% of BW (P less than .05). Supplementation did not change digestibilities of dry or organic matter (P greater than .10). Particulate passage rate was greater (P less than .10) with supplementation at 1.0 than at .5% of BW, and increasing the level of supplementation from .5 to 1.0% of BW affected fluid passage rate positively with clover but negatively with bermudagrass (interaction, P less than .05). Serum prolactin increased (P less than .05) with all supplementation treatments, although no differences were observed between supplement type-supplementation level combinations (P greater than .10). Ground corn and wheat hay were supplements in Exp. 2. Total intake of dry matter was greater with supplements provided at 1.0 rather than at .5% of BW and for corn rather than wheat hay (P less than .05). Neutral detergent fiber digestion (percent of intake and grams per day) rose when wheat hay was offered at 1.0 vs .5% of BW but declined when the level of supplemental corn increased from .5 to 1.0% of BW (interaction, P less than .05). There were no differences among diets in particulate and fluid passage rates and serum prolactin concentration. Supplementation with nontoxic forage of a basal diet of infected fescue yielded intake substitution when forage was offered at .5% of BW, although incomplete substitution occurred with 1.0% of BW of supplemental forage such that total intake increased as compared to the lower level of supplementation.  相似文献   

19.
A 2 x 2 factorial study evaluated effects of cow wintering system and last trimester CP supplementation on performance of beef cows and steer progeny over a 3-yr period. Pregnant composite cows (Red Angus x Simmental) grazed winter range (WR; n = 4/yr) or corn residue (CR; n = 4/yr) during winter and within grazing treatment received 0.45 kg/d (DM) 28% CP cubes (PS; n = 4/yr) or no supplement (NS; n = 4/yr). Offspring steer calves entered the feedlot 14 d postweaning and were slaughtered 222 d later. Precalving BW was greater (P = 0.02) for PS than NS cows grazing WR, whereas precalving BCS was greater (P < 0.001) for cows grazing CR compared with WR. Calf birth BW was greater (P = 0.02) for CR than WR and tended to be greater (P = 0.11) for PS than NS cows. Prebreeding BW and BCS were greater (P 0.32) by PS. Calf weaning BW was less (P = 0.01) for calves from NS cows grazing WR compared with all other treatments. Pregnancy rate was unaffected by treatment (P > 0.39). Steer ADG, 12th-rib fat, yield grade, and LM area (P > 0.10) were similar among all treatments. However, final BW and HCW (P = 0.02) were greater for steers from PS-WR than NS-WR cows. Compared with steers from NS cows, steers from PS cows had greater marbling scores (P = 0.004) and a greater (P = 0.04) proportion graded USDA Choice or greater. Protein supplementation of dams increased the value of calves at weaning (P = 0.03) and of steers at slaughter regardless of winter grazing treatment (P = 0.005). Calf birth and weaning BW were increased by grazing CR during the winter. Calf weaning BW was increased by PS of the dam if the dam grazed WR. Compared with steers from NS cows, steer progeny from PS cows had a greater quality grade with no (P = 0.26) effect on yield grade. These data support a late gestation dam nutrition effect on calf production via fetal programming.  相似文献   

20.
Two winter feeding trials (1985-86; 1986-87) were conducted to evaluate the productivity of gestating ewes fed lasalocid (L) and two supplement levels while grazing Montana winter range. Five hundred range ewes were randomized within age and breed each year and allotted to .15 or .23 kg hd-1.d-1 of a 20% CP supplement and either no L or L at 70 mg hd-1.d-1. Feed treatments began on 18 Dec. approximately 100 d before the first expected lambing date and continued for 84 d. Ewes fed .23 kg of supplement per day gained more (P less than .01) total weight (4.9 vs 4.0 kg) during the 84-d experiment and had higher (P less than .05) grease fleece weights (4.2 vs 4.0 kg) than those fed .15 kg of supplement. Lasalocid had no effect (P greater than .05) on ewe weight change or grease fleece weights. Supplement level had no effect (P greater than .05) on reproduction, lamb mortality and lamb performance. Ewes fed L had a greater (P less than .05) percentage of lambs born per ewe than those not fed L (120.7 vs 112.1%); lamb performance was similar (P greater than .05) between treatments. However, because a greater percentage of lambs were born per ewe starting the experiment, ewes fed L produced more (P less than .05) kilograms of weaned lamb than those not fed L (25.9 vs 23.4 kg). In conclusion, ewes fed L and grazing winter range weaned more kg of lamb than did controls because of an improved lambing percentage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号