首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
利用玉米秸秆发酵产丁醇在生物质转化领域具有明显优势。为解除玉米秸秆水解液中多种有毒物质对微生物生长的抑制及对发酵产量的影响,该研究摒除常用的理化脱毒法,选择高效环保的酶法脱毒以实现溶剂高产。研究结果表明:通过优化漆酶和甲酸脱氢酶添加量以去除水解液中酚类和甲酸,单独添加漆酶5 U/m L、甲酸脱氢酶1 U/m L,水解液发酵的丙酮-丁醇-乙醇(acetone-butanol-ethanol,ABE,总溶剂)产量分别为1.03和1.11 g/L。再在活性炭的辅助下形成高效酶法复合脱毒体系,经复合脱毒处理的水解液发酵后丁醇产量达2.90 g/L,总溶剂ABE产量达到4.4 g/L,比未作处理的对照组发酵产量高出约5倍,实现了生物质的高效转化。可为玉米秸秆水解液发酵生产燃料丁醇提供参考。  相似文献   

2.
玉米籽皮稀酸水解液脱毒发酵制备丁二酸的可行性   总被引:4,自引:3,他引:1  
丁二酸是一种重要的碳四平台化合物,利用非粮生物质替代淀粉制备丁二酸可保证粮食安全并降低原料成本。玉米籽皮是一种廉价的非粮生物质,该文采用稀酸水解玉米籽皮制备混合糖液,并对玉米籽皮稀酸水解液的脱毒条件进行了优化,优化结果为:活性炭用量1%(m/V)、pH4.0、作用温度30℃、作用时间30 min。在此工艺条件下,水解液的脱色率为92.27%,糠醛脱除率75%,5-羟甲基糠醛脱除率53%,多酚类化合物脱除率98%,总糖损失低于5%。经过脱毒处理后,产琥珀酸放线杆菌 NJ113均能利用水解液中的葡萄糖、木糖、阿拉伯糖,培养基总糖浓度为50 g/L时,丁二酸分批发酵的质量收率可达0.68 g/g,浓度可达34.2 g/L,生产强度达0.83 g/(L·h),总糖浓度为68.2 g/L时,丁二酸质量收率仍可达0.62 g/g,浓度42.3 g/L,生产强度0.98 g/(L·h)。发酵试验表明脱毒的玉米籽皮稀酸水解液作为碳源厌氧发酵制备丁二酸具有可行性。  相似文献   

3.
2,3-丁二醇是一种重要的化工产品,利用棉秆水解液替代淀粉原料制备2,3-丁二醇可保证粮食安全并降低成本。该文以棉秆稀酸水解液为基础,研究了其中糠醛和苯酚微波辅助加热-活性炭吸附的脱毒条件,优化结果为:活性炭用量1%、微波功率330 W、作用时间10 min。在此工艺条件下,糠醛的去除率为81.2%,苯酚的脱除率为92.3%,总糖的损失为10.6%。脱毒棉秆水解液为底物发酵生产2,3-丁二醇研究表明,水解液浓度为40 g/L时Klebsiella pneumoniae XJ-Li菌体浓度和2,3-丁二醇的产率最高,补料批式发酵可以缓解高浓度棉秆水解液对微生物生长与代谢的抑制作用。通过采用添加60 mg/L维生素C和维持发酵液pH值于5.5的复合调控方法,2,3-丁二醇的质量浓度达到了45.1 g/L,产率为0.45 g/g。发酵试验表明脱毒的棉杆水解液作为碳源发酵制备2,3-丁二醇具有可行性。  相似文献   

4.
纤维原料预处理过程中会产生酚酸等抑制菌株生长的物质,为选育出高丁醇产量及高耐受酚酸胁迫丁醇生产菌株,该研究利用多因子复合筛选策略筛选出一株能够合成足够还原力与对丁醇耐受性较好的菌株Clostridium beijerinckii W6。通过丁醇胁迫适应性进化获得丁醇耐受菌W6-1,其丁醇和总溶剂产量相较于菌株W6分别提高了14.01%和16.85%。通过紫外诱变处理菌株W6-1并结合理性筛选模型最终获得丁醇产量较高菌株W6-2,其丁醇及总溶剂产量分别可达到(9.51±0.06)和(15.32±0.11)g/L。最后将菌株W6-2通过酚酸胁迫适应性进化得到突变菌W6-3,其能耐受1.0 g/L酚酸胁迫环境,且丁醇和总溶剂产量相较于菌株W6-2分别提高了18.17%和17.49%。当以葛渣水解液为底物进行丙酮丁醇发酵时,突变菌W6-3的丁醇产量达(8.54±0.31)g/L,相较于菌株W6-2提高了26.71%。经多轮次诱变及适应性进化处理获得的突变菌的酚酸耐受性及发酵性能均有较大提高,该文所采用的多轮次筛选方法可以为其他快速筛选优良生产菌提供可靠的理论参考。  相似文献   

5.
草坪草糖化及发酵生产燃料乙醇   总被引:2,自引:0,他引:2  
为利用草坪草生产燃料乙醇,通过粉碎和碱性氧化物浸泡预处理草坪草,采用纤维素酶和果胶酶混合糖化纤维素,研究嗜鞣管囊酵母和酿酒酵母发酵水解液生产乙醇,结果表明,碱性氧化物固液比为1:40(质量比),浸泡48 h预处理后的木质素脱除率为70%(质量分数);嗜鞣管囊酵母和酿酒酵母发酵30 h后乙醇的质量体积分数最高,分别为9.6 g/L和11.7 g/L,以可发酵糖减少量计算,糖醇转化率分别为25.7%和38.1%(质量分数),为理论糖醇转化率的61.2%和74.7%。  相似文献   

6.
利用甜高粱秸秆汁发酵生产丁醇、丙酮   总被引:3,自引:1,他引:2  
该试验以甜高粱秸秆汁作为生产丙酮、丁醇的发酵原料,从5种丙酮-丁醇菌中选出能够利用甜高粱秸秆汁且丁醇产量高的Bacillus acetobutylicum Bd3菌作为试验菌株,并对该菌株的发酵条件进行优化,得到的优化条件为:糖度为10oBrix的甜高粱秸秆汁,玉米浆含量5 g/L,接种量6%(v/v),(NH4)2SO4 5 g/L,KH2PO4 0.4 g/L,CaCO3 6 g/L,温度32℃,pH6.8,丁醇产量达到10.29 g/L。  相似文献   

7.
牛蒡菊糖脱色工艺的研究   总被引:5,自引:0,他引:5  
研究了6种离子交换树脂和吸附树脂对牛蒡菊糖溶液中色素脱除的影响,筛选出3种树脂:非极性大孔吸附树脂DA201-B和DA201-C、大孔弱碱性的阴离子交换树脂D301-G,通过正交试验对脱色条件进行优化。结果表明:采用树脂D301-G,在pH 6.5,35℃下,牛蒡菊糖溶液的脱色率可达到95%,多糖保留率为75%,蛋白质去除率87%,牛蒡中的色素可能主要以阴离子色素、非极性小分子色素为主。  相似文献   

8.
白酒糟水解液摇瓶发酵生产木糖醇的工艺优化   总被引:3,自引:0,他引:3  
为充分利用白酒糟资源,探讨酸水解液作为碳源发酵生产木糖醇的可行性。采用热带假丝酵母(Candidatropicalis1779)发酵酒糟水解液生产木糖醇,分别利用单因素试验和正交试验考察了影响发酵的工艺条件。发酵在250mL摇瓶发酵瓶中进行。结果表明,当种子龄27h、接种量20mL、装液量100mL、氮源添加量20mL、氮源浓度48g/L时发酵效果最好。该条件下发酵液中木糖醇浓度为11.85mg/mL,木糖利用率和还原糖利用率分别为45.62%和74.81%,残留木糖浓度为463.51μg/mL。发酵试验表明酒糟水解液作为碳源发酵生产木糖醇具有可行性。  相似文献   

9.
树莓干酒加工技术研究   总被引:1,自引:1,他引:1  
树莓果实适合加工果汁、果酒、色素等产品.对树莓干酒加工技术进行研究为其开发利用提供依据.通过单因素试验和正交试验结果表明以选用RC212酵母作树莓干酒酿酒酵母,纯树莓原汁为发酵原料,最佳接种量为0.2 g/L,最适发酵温度为18~20℃,初始二氧化硫浓度为6×10,调糖为180 g/L进行发酵,获得的树莓原酒品质较好.发酵原酒加入0.3 g/L明胶澄清后,在交换量1(10~15)(体积比)下用D380弱碱性阴离子交换树脂降酸幅度达76.9%,而对树莓干酒的商品性没有影响,处理后树莓干酒的滴定酸含量达到国家标准.  相似文献   

10.
以菊芋粉为原料同步糖化发酵生产燃料乙醇   总被引:3,自引:1,他引:3  
汪伦记  董英 《农业工程学报》2009,25(11):263-268
利用粟酒裂殖酵母(Schizosaccharomyces pombe)能发酵菊芋未水解糖液高产乙醇的特点提出了以菊芋粉为原料,同步糖化发酵生产燃料乙醇的新工艺。在摇瓶中考察了原料预处理方法、原料浓度和初始pH值对乙醇发酵的影响,进而在5 L发酵罐中考察了未调控pH值和恒定pH值与通气情况对乙醇发酵的影响。结果表明:该菌株最适pH值为4.0;100目筛分的菊芋粉发酵效果良好,115℃灭菌处理优于121℃,在此条件下,菊芋粉浓度200 g/L时,乙醇产量达到66.58 g/L,理论转化率为85.88%;发酵液pH值下降对乙醇发酵没有影响,通入适量氧气会导致乙醇产量的下降,这表明粟酒裂殖酵母进行乙醇发酵时不需要供氧;通入氮气保持厌氧环境不能显著提高乙醇产量,不通气进行乙醇发酵也达到高的转化率,因此在工业生产中,不必保持厌氧发酵环境。在此基础上,对菊芋粉补料发酵进行了试验,补料至菊芋粉终浓度为300 g/L,发酵终点乙醇浓度为94.81 g/L,理论转化率为81.54%。这些研究工作,为以菊芋为原料的燃料乙醇工业化生产提供技术依据。  相似文献   

11.
竹子蒸汽爆破法预处理及酶解获取可发酵单糖   总被引:1,自引:1,他引:0  
竹子的生物量很高,可作为生物能源生产的重要原料.预处理是纤维素乙醇生产中的关键技术,该文以孝顺竹和大木竹为原料,采用蒸汽爆破法对竹子进行预处理,并进行酶解试验,用高效液相色谱法测定预处理滤液和酶解液中的可发酵单糖含量.结果表明,采用0.5%稀硫酸预浸泡能使总糖得率提高49%;汽爆强度对预处理效果有显著影响,汽爆强度指数为3.35时,预处理后固形物的酶解转化率最高;汽爆强度指数为3.65时总糖得率最高,每千克干基竹粉可得单糖289.5 9.汽爆法预处理存在聚糖分解后进入滤液、单糖分解等现象,通过质量平衡才能准确预测其单糖产率.汽爆预处理后竹子的酶解率不及玉米秸秆等生物质原料,可能与其木质化程度高、微观组织结构更为致密等因素有关.  相似文献   

12.
超低浓度马来酸水解玉米芯纤维素   总被引:1,自引:0,他引:1  
为考察超低浓度马来酸对玉米芯纤维素的水解性能,该文采用高温液态水预处理和超低马来酸水解相结合的两步法。3,5-二硝基水杨酸(DNS)比色法和高效液相色谱法(HPLC)分析表明,第一步预处理(200℃,10min,4MPa,500r/min,液固比20:1mL/g)玉米芯可获得12.24g/L还原糖,半纤维素转化率91.76%,损失3.61%的纤维素;其残渣进行第二步酸水解(质量分数0.1%,220℃,20min,4MPa,500r/min,液固比20:1mL/g)可获得9.94g/L还原糖,纤维素转化率达95.17%,约1/3转化为糖。气相色谱-质谱联用(GC-MS)分析表明,第二步水解液中含有多种木质素降解副产物,如苯酚、苯甲酸等,带有多种活泼基团,可能与糖降解物反应,加快葡萄糖降解正反应的进行。改进反应器,使得糖降解物和木质素降解物及时排出,可提升马来酸水解性能,为马来酸在生物质水解领域的应用提供参考。  相似文献   

13.
玉米秸秆蒸汽爆破用于厌氧发酵的技术评价   总被引:5,自引:3,他引:2       下载免费PDF全文
蒸汽爆破可破坏木质纤维素结构,提高纤维素、半纤维素的转化利用率,是秸秆类物质利用的一种有效预处理方式。作者研究了玉米秸秆蒸汽爆破处理及其厌氧发酵过程中的能量平衡关系,结果表明相同维压时间下蒸汽爆破处理后玉米秸秆厌氧发酵过程中的能源转化率随着压力增大而增大,而在相同压力条件下均在90 s维压时间时得到最大能源转化率。玉米秸秆蒸汽爆破后在常温条件下厌氧发酵的最小和最大能源转化率分别为8.39%和11.68%,是对照组的1.38倍和1.92倍。但对蒸汽爆破玉米秸秆厌氧发酵的增量效益-费用比分析表明,因玉米秸秆蒸汽爆破处理而引起厌氧发酵产气量增加所形成产气的能量增加量小于蒸汽爆破处理所消耗的能量,从能量转换角度来说蒸汽爆破并不是玉米秸秆厌氧发酵的最经济处理方式。  相似文献   

14.
汽爆预处理青玉米秸秆厌氧发酵特性   总被引:4,自引:1,他引:3  
为了研究青玉米秸秆未汽爆和汽爆预处理后厌氧发酵产沼气特性,该文采用汽爆压力为2.5MPa,保压时间为90s,加入质量分数为30%的沼液,未气爆青玉米秸秆的TS(总固体物)质量分数为6%,汽爆预处理青玉米秸秆厌氧发酵的TS质量分数分别为1%、2%、3%、4%、6%、8%、10%和15%,考察了厌氧发酵过程中pH值和产气量随时间和TS质量分数的变化。结果表明:未汽爆秸秆在TS质量分数为6%时能够顺利厌氧发酵,但汽爆秸秆厌氧发酵液极易酸化,且无法调节,适宜的TS质量分数最大为4%;未汽爆秸秆挥发性固体产气率为214.6mL/g,汽爆秸秆在TS质量分数为3%时产气率最大,为334.8mL/g,比未处理秸秆提高了56%;未汽爆秸秆的产气速率为3.3mL/(g·d),汽爆秸秆产气速率随TS质量分数增大而减小,在TS质量分数为1%时最大,为14.8mL/(g·d)。青玉米秸秆经汽爆预处理后其厌氧发酵产沼气的产气率和产气速率大大提高,可以节约发酵时间,缩短发酵周期,有利于秸秆能源化利用的工业化生产。  相似文献   

15.
The goal of this study was to develop a fungal process for ethanol production from corn fiber. Laboratory-scale solid-substrate fermentation was performed using the white-rot fungus Phanerochaete chrysosporium in 1 L polypropylene bottles as reactors via incubation at 37 degrees C for up to 3 days. Extracellular enzymes produced in situ by P. chrysosporium degraded lignin and enhanced saccharification of polysaccharides in corn fiber. The percentage biomass weight loss and Klason lignin reduction were 34 and 41%, respectively. Anaerobic incubation at 37 degrees C following 2 day incubation reduced the fungal sugar consumption and enhanced the in situ cellulolytic enzyme activities. Two days of aerobic solid-substrate fermentation of corn fiber with P. chrysosporium, followed by anaerobic static submerged-culture fermentation resulted in 1.7 g of ethanol/100 g of corn fiber in 6 days, whereas yeast ( Saccharomyces cerevisiae) cocultured with P. chrysosporium demonstrated enhanced ethanol production of 3 g of ethanol/100 g of corn fiber. Specific enzyme activity assays suggested starch and hemi/cellulose contribution of fermentable sugar.  相似文献   

16.
该文主要以粒度小于0.088 mm秸秆粉的酶解上清液为底物与热预处理后的活性污泥进行厌氧发酵产氢试验,以累积产氢量为考察指标,基于响应面Box-Behnken模型研究不同影响因素对玉米秸秆酶解上清液厌氧发酵产氢的影响,对玉米秸秆酶解上清液厌氧发酵产氢工艺进行优化。结果表明:温度、初始p H值和还原糖浓度三因素中,温度和还原糖浓度对玉米秸秆酶解上清液厌氧发酵产氢的影响最大。采用Box-Behnken模型获得的最佳产氢条件为:温度38.32℃,初始p H值4.93,还原糖浓度20.70 mg/m L,最大产氢量685.59 m L,此时最大产氢率为57.13 m L/g(玉米秸秆)。通过试验验证,实际最大产氢量为659.24 m L,产氢率为54.94 m L/g(玉米秸秆),与模型预测值相比,相对误差为3.84%,说明该模型具有较好的拟合性。该优化工艺可为后期连续流状态下的生物制氢系统提供参考。  相似文献   

17.
The cost of biosurfactant production may be significantly decreased by using inexpensive carbon substrates like agricultural residues. However, scarce information can be found in the literature about the utilization of lignocellulosic residues for obtaining biosurfactants. Usually agricultural residues are field burned, producing various toxic compounds to the atmosphere; so, as an interesting alternative to the traditional field burning of this kind of residue, this work proposes the utilization of agricultural wastes (barley bran, trimming vine shoots, corn cobs, and Eucalyptus globulus chips) for simultaneous lactic acid and biosurfactant production. Previous to this biotechnological process, lignocellulosic residues were hydrolyzed, using H2SO4, under selected conditions and neutralized with CaCO3. Following, Lactobacillus pentosus was employed for the fermentation of hemicellulosic hydrolyzates after nutrient supplementation. Biosurfactants were measured by taking into account the surface tension reduction. The highest value of reduction (21.3 units) was found when using hemicellulosic sugar hydrolyzates obtained from trimming vine shoots, corresponding to 0.71 g of biosurfactant per g of biomass and 25.6 g of lactic acid/L. On the contrary, barley bran husk hydrolyzates only produced 0.28 g of biosurfactant per g of biomass and 33.2 g of lactic acid/L. The differences between biosurfactant production can be attributed to the different compositions of the hydrolyzates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号