首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
几种基于温度的参考作物蒸散量计算方法的评价   总被引:33,自引:12,他引:21  
根据华北地区6个气象站的长系列资料,利用FAO56-PM公式对3种基于温度的ET0计算方法(Hargreaves、McCloud、Thornthwaite)进行评价。依据平均偏差、相关系数和t统计量3种指标分别对年和月序列的吻合程度做出评价。结果表明:Hargreaves与FAO56-PM吻合最好,其次为McCloud,吻合最差的为Thornthwaite。就年值而言,温度法在华北多数站点比FAO56-PM显著偏低。其中Hargreaves偏低53.2~200.2 mm或4.6%~15.1%,Thornthwaite偏低269.7~468.1 mm或24.8%~35.8%,McCloud偏低90.5~435.7 mm或8.2%~40.5%。温度法与FAO56-PM吻合程度随月份而变,在夏季月份比后者偏高,其他季节尤其是冬季月份显著偏低。从峰值到达时间看,Hargreaves与FAO56-PM的峰值相一致,二者均在6月份。Thornthwaite和McCloud的峰值则明显滞后,二者在7月份达到最大,与最高温度出现的月份相一致。在仅有气温的条件下,建议在华北优先选用Hargreaves方法。  相似文献   

2.
3.
黄土区参考作物蒸散量多种计算方法的比较研究(简报)   总被引:2,自引:2,他引:0  
参考作物蒸散量的计算公式大多存在地域性限制,分析其应用情况能够反映这些公式在中国部分地区的应用前景.该文根据1996~2000年陕西省榆林、延安与西安三站的逐日气象资料,以FAO推荐的Penman-Monteith方法为标准, 对计算参考作物蒸散量的10种方法进行比较.线性回归,平方根误差与平均偏差方法检验的结果显示:Penman系列方法之间关系密切,Kimberly PM-72方法最好.不同方法之间在夏季的差异较大,春秋季较小.在需要数据较少的方法中Privstley-Taylor方法接近penman-Monteith方法.FAO-Rad、FAO-BC、Hargreaves与Makkink4种方法与其差异明显,而且存在地域差异.在本区应用这些方法时需要对其参数进行适当调整,以适应当地的气象条件.  相似文献   

4.
为实现大区域尺度参考作物蒸散量(reference crop evapotranspiration,ET0)资料缺失情况下的准确计算,该文将长江流域划分为上、中、下游3个子区域,基于反距离权重法的新型空间展布方法得到3个虚拟站点分别代表每个子区域,利用长江流域102个站点1964-2013年近50a的逐日气象数据,根据FAO-56 Penman-Monteith(P-M)法、Hargreaves-Samani(HS)法、Irmark-Allen(I-A)法、Priestley-Taylor(P-T)法、Makkink(M-K)法、Penman-Van Bavel(PVB)法、1948年Penman(48-PM)法分别计算每个站点逐日ET0,并以P-M法为标准,利用Nash-Sutcliffe系数(CD)、逐日相对均方根误差(RMSE)、Kendall一致性系数(K)对其适用性进行评价,结果表明:在3个子区域6种ET0计算方法的日值与P-M法拟合方程确定系数R2均通过了极显著水平检验(α=0.01),长江上游P-T法ET0日值计算精度最高(ET0日值拟合方程斜率为1.030,RMSE=0.341 mm/d,CD=0.886,K=0.829),H-S法、I-A计算精度较低(ET0日值拟合方程斜率分别为1.427、1.308,RMSE=0.909、0.829 mm/d,CD=0.581、0.523,K=0.792、0.742),长江中、下游PVB法计算精度最高,P-T法计算精度次之,H-S法与I-A法计算精度较低;长江上游6种算法ET0月值的计算精度由高到低依次为P-T法、PVB法、M-K法、48-PM法、H-S法、I-A法,与P-M法的平均误差分别为0.27、0.35、0.51、0.48、0.74、0.78 mm/d;长江中、下游6种算法计算精度由高到低为PVB法、P-T法、M-K法、48-PM法、H-S法、I-A法;整个长江流域P-T法、PVB法与P-M法ET0计算结果相对误差均在35%以下,H-S法、I-A法计算精度较低,其相对误差基本高于40%;因此,PVB法与P-T法在整个长江流域的计算精度较高,可作为长江流域ET0简化计算推荐方法。  相似文献   

5.
参考作物蒸散简易估算方法在黄土高原的适用性   总被引:2,自引:7,他引:2  
李志 《农业工程学报》2012,28(6):106-111
参考作物蒸散(ET0)的简易估算方法在气象数据缺乏区域具有广泛的应用,但其适用性需要评估。基于1961~2009年48个气象站的数据,以FAO Penman-Monteith公式为标准评估了6种ET0简易估算方法(FAO-24 Rad、FAO-24 BC、Hargreaves、Priestley-Taylor、Makkink和Turc)在黄土高原应用的可能性。结果表明,对于ET0年值的估算,FAO-24 BC和Hargreaves的结果令人满意,效果最差的是Makkink和Priestley-Taylor公式。ET0年值误差主要来源于11-3月,各方法对4-10月ET0的估算效果相对较好。各方法的适用性存在空间变异,FAO-24 BC和Hargreaves公式的效果普遍较好,其他方法对该区各站ET0估算误差均较大,特别是Makkink和Priestley-Taylor公式;除Priestley-Taylor公式外,多数方法对西南区的估算误差较大。因此,黄土高原地区进行参考作物蒸散的简单计算时,推荐使用FAO-24 BC和Hargreaves方法。  相似文献   

6.
吐鲁番地区气候变化对参考作物蒸散量的影响   总被引:3,自引:2,他引:3  
新疆吐鲁番盆地是中国气候最干旱、水资源最紧缺的地区之一,农业用水完全依赖于山区径流和地下水的灌溉。研究在气候变化背景下的参考作物蒸散量的变化,对制定科学合理的水资源管理技术方案具有重要意义。根据吐鲁番地区4个气象台站1959-2007年的历史气候资料以及联合国粮农组织(FAO)推荐的Pen-man-Monteith公式计算各地逐年参考作物蒸散量,采用线性回归、Morlet小波和Mann-Kendall突变检测等方法,分析近49a各站年平均气温、降水量、日照时数、年平均风速和空气相对湿度等气候要素以及年参考作物蒸散量的变化趋势和变化特征,据此分析参考作物蒸散量变化的气候成因。结果表明:①近49a吐鲁番地区年平均气温和空气相对湿度呈升高趋势,日照时数和年平均风速呈减小的趋势,降水量变化不明显;②年参考作物蒸散量与上述各气候要素均具有较好的相关关系(p〈0.1),其中与年平均风速、空气相对湿度、降水量和平均气温的相关性最为密切(p〈0.01)。受上述各气候要素变化的综合影响,近49a吐鲁番地区的参考作物蒸散量总体呈明显的减小趋势(P〈0.01),这对降低农作物需水量和农田灌溉量具有重要影响;③突变检测表明,吐鲁番地区年平均气温在1970年发生了突变性升高,年平均风速在1965年发生了突变性减小,参考作物蒸散量在1968年发生了突变性减小,其它气候要素未发生突变;④各气候要素和参考作物蒸散量分别存在准2~8a的年际尺度和16~24a的年代际尺度的周期性变化。  相似文献   

7.
参考作物腾发量计算方法在新疆地区的适用性研究   总被引:15,自引:1,他引:15  
新疆维吾尔族自治区地域辽阔,气候特征空间差异性显著。准确估算各地区的参考作物腾发量(ET0)是新疆节水灌溉设计的基础。该文选用6种计算公式利用新疆4个典型气候区的气象资料计算了ET0。并以Penman-Monteith方法作为标准,对其它方法进行评价。结果表明在新疆各气候区1948Penman法估算的ET0值较FAO-24 Penman与FAO-24 Radiation方法更接近于P-M法的计算结果;在缺少资料的地区,Hargreaves方法或湿润区用Priestley-Taylor方法均可以得到与P-M法估值相当的结果;同时分析了P-M法计算的ET0值和水面蒸发量之间的关系,为利用水面蒸发资料估算新疆地区ET0值提供参考。  相似文献   

8.
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration, ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine, ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。  相似文献   

9.
黄土高原地区近50年参考作物蒸散量变化特征   总被引:20,自引:4,他引:16  
为了探求黄土高原地区深层土壤干燥化过程及成因和该地区植被耗水的变化情况,该文根据黄土高原5站点近50 a的日气象资料,利用Penman-Monteith公式计算了同参考作物蒸散量,并分析了Eto的日均值、月均值和年值的变化特征,同时分析了平均温度、最高温度、最低温度、日照时数、风速和相对湿度与Eto的相关性.结果表明:黄土高原地区Eto日值和月均值与大气温度、日照时数均达到了极显著的相关性,其Eto日值和层Eto月均值曲线均呈单峰型,存在明显的季节变化特征,峰值均出现在6月.除了西安和西宁Eto年值显著降低外,其他3站点的年际间变化趋势不显著,同时除西宁站外其他各站点在20世纪80年代后Eto均有上升的趋势.  相似文献   

10.
基于阿勒泰地区7个气象站1961—2012年逐日气象资料,采用Penman-Monteith模型计算了逐日参考作物蒸散量,运用Mann-Kendall非参数检验法、小波分析法,并结合ArcGIS软件对作物参考蒸散量的时空变化特征进行了研究。结果表明:阿勒泰年和春季作物参考蒸散量呈增加趋势,而夏季、秋季和冬季作物参考蒸散量呈减少趋势。年和夏季的作物参考蒸散量分别在1994年、1992年发生突变,而春季、秋季和冬季的作物参考蒸散量则没有发生突变。年和四季的作物参考蒸散量都存在27 a的周期。空间分布上,年、春季、夏季和秋季的平均作物参考蒸散量呈自阿勒泰市南部和福海县西北部向东部、南部和西部逐渐递减的变化趋势。而冬季作物潜在蒸散量大致呈现自西向东逐渐递减。变化趋势上,春季潜在蒸散量在空间上都呈增加趋势,而年、夏季、秋季和冬季的潜在蒸散量在阿勒泰的东部呈增加趋势,在西部则呈减少趋势。  相似文献   

11.
为提高Hargreaves-Samani(H-S)模型对参考作物蒸散量(reference crop evapotranspiration,ET0)的计算精度,利用川中丘陵区13个代表站点1954~2013年近60 a逐日数据,依据贝叶斯原理并考虑辐射的影响对H-S模型进行改进,并以Penman-Monteith(P-M)模型为标准,对其在川中丘陵区的适用性进行评价。结果表明:1)H-S改进模型与P-M模型ET0计算结果变化趋势基本一致;2)与H-S模型相比,在3个区域H-S改进模型计算的ET0旬值平均绝对误差分别由0.93、0.95、0.93 mm/d下降到0.15、0.19、0.28 mm/d,且3个区域ET0旬值拟合方程斜率分别由1.45、1.39、1.45变为0.89、0.94、0.90,Kendall一致系数由0.70、0.80、0.82提高到0.88、0.92、0.94,拟合效果与计算精度均明显提高;3)在3~10月的作物主要生长期,3个区域ET0月值平均绝对误差分别由0.89、1.14、1.28 mm/d下降到0.46、0.29、0.21 mm/d,ET0月值回归拟合方程斜率及一致性均明显提高;4)H-S改进模型随海拔升高计算精度有所降低,H-S改进模型全年内计算精度最大可提高47%,尤其在作物主要生长期,精度最大提高了48%。因此,H-S改进模型可显著提高ET0计算精度,在海拔较低的区域尤为明显,可作为川中丘陵区ET0计算的简化推荐模型。  相似文献   

12.
参考作物蒸散发(ET0,reference evapotranspiration)是计算植被耗水量、分析区域水分平衡、管理水资源的基本参数。由于区域间气象条件的差异,ET0模型在不同地区表现出不同的适用性。蒸渗仪实测是欧美地区评价参考作物蒸散发模型的经典方法,而中国尚少研究,华北地区未见报道。2012年生长季(4-10月),应用自动称重式蒸渗仪实测高羊茅草坪蒸散评价了Penman-Monteith(FAO-56)、Hargreaves-Samani、Priestley-Taylor、Penman-van Bavel模型在北京地区的适用性。在2个蒸渗仪中建植冷季型高羊茅草坪,以获得ET0标准数据。试验地安装Dynamet气象站,自动测量并记录气象数据:空气温度、空气相对湿度、太阳总辐射和高度2m的风速,用于模型计算参考作物蒸散发。应用线性回归与均方根误差(RMSE)、一致性指数(d)2个指标评价模型的预测准确性。研究结果表明,太阳总辐射与月蒸散之间呈现较强的线性关系(R2=0.95,p=2.72×10-7),说明太阳辐射能量是驱动SPAC(soil-plant-atmosphere continuum)系统中水分从植被向大气运动的主要动力。随着时间尺度减小,模型的估算准确度降低。由于模型的输入参数不同,在ET0计算中出现了不同方向的偏差。月尺度上,Priestley-Taylor模型低估,而Penman-Monteith、Hargreaves-Samani和Penman-van Bavel模型高估了蒸散。日尺度上,Hargreaves-Samani模型和Penman-van Bavel模型略微高估了日蒸散,比率分别为1.0167和1.0526;Penman-Monteith模型和Priestly-Taylor模型低估了日蒸散,比率分别为0.8204和0.7593。时尺度上,除了Priestly-Taylor模型全部得出最低的数值,其余模型在不同天气类型下得出不同的计算结果。综合月、日、时3个时间尺度的评价结果,Penman-van Bavel是最准确的ET0计算公式,RMSE分别为0.63 mm/d(月)、1.43 mm/d(日)、0.087mm/h(时),d值分别为0.96(月)、0.89(日)、0.87(时)。Penman-Monteith模型的计算准确性比Penman-van Bavel模型略低,d值为0.73~0.93。  相似文献   

13.
气象要素时间分辨率对参考作物蒸散估算的影响   总被引:2,自引:1,他引:2  
参考作物蒸散(reference evapotranspiration,ET0)的准确估算是农业水资源合理利用的重要环节。为了明确气象要素不同时间分辨率对参考作物蒸散估算的影响,该文基于寿县国家气候观象台2007-2013年观测资料,将1min时间分辨率数据平均值作为真实值,分析了10、20、30、40、60 min、4次/d(02:00、08:00、14:00、20:00)和3次/d(08:00、14:00、20:00)这7种不同时间分辨率对逐日气温、风速、太阳辐射、相对湿度和日、月及年参考作物蒸散(ET0)估算的误差情况。结果表明:ET0和气象要素的误差整体上随时间分辨率降低而增大。4个气象因子中,日平均风速估算受时间分辨率变化的影响最显著,误差最大;其次是太阳辐射。逐日ET0估算在7种时间分辨率的平均绝对相对误差(mean absolute relative error,MAPE)依次为0.53%、1.01%、1.38%、1.72%、2.46%、4.72%和6.14%,表明10至60min时间分辨率的估算效果相较3次/d和4次/d有明显改善。10至40 min的绝对误差超过95%都在-0.20~0.20 mm/d区间内,误差较小且集中度高;太阳辐射时间分辨率变化对ET0估算误差贡献最大,其次是风速,这主要是由于两个要素本身对分辨率较敏感且分别是ET0辐射项和动力项的主要组成因子。时间分辨率的变化对累计后长时间尺度ET0的影响较小,月和年ET0的误差明显小于逐日ET0,月ET0在7种时间分辨率的MAPE值依次为0.13%、0.21%、0.27%、0.40%、0.50%、1.18%和1.48%;各年ET0相对误差(relative error,PE)的绝对值多数均小于0.50%。  相似文献   

14.
参考作物蒸发蒸腾量(ET0)的计算公式很多,各公式所需参数各异,为寻找一种所需资料少而又精度较高的替代方法,选用1998年FAO-56分册推荐的Penman-Monteith(PM)、Hargreaves、Irmark-Allen等6种方法分别计算海河流域10个典型气象站30 a的参考作物蒸发蒸腾量,并以PM公式为标准,对其他方法进行评价。结果表明,10个站点中除了五台山地区,Hargreaves与FAO-24 Radiation 这2种方法更接近于PM方法的计算结果,其误差较小,在海河流域缺少辐射和风速  相似文献   

15.
Priestley-Taylor与Penman法计算参照作物腾发量的结果比较   总被引:25,自引:13,他引:25       下载免费PDF全文
利用北京气象站50年的气象资料,对两种常用的计算参照作物腾发量的公式——Priestley-Taylor和Penman方法的计算结果进行了比较。年值序列比较显示,Priestley-Taylor结果远小于Penman结果,前者比后者低15%~31%,两者最大相差378.3 mm,最小相差150.9 mm,多年平均相差255.9 mm。对历年逐月序列分析显示,两种方法在7、8月份的结果十分接近,没有显著差异,但其它月份均存在显著差异。造成这种显著差异的原因,既有降雨的影响,又有Penman中空气动力学项的影响,而后者的影响可能更大些。空气动力项与辐射项之比与两种方法的吻合程度呈显著负相关。该比值越大,两种方法的吻合程度越差;反之,吻合程度越好。  相似文献   

16.
改进Hargreaves模型估算川中丘陵区参考作物蒸散量   总被引:3,自引:2,他引:3  
为提高Hargreaves-Samani(HS)模型参考作物蒸散量(ET0)计算精度,该文基于贝叶斯原理利用川中丘陵区1954-2002年逐日资料对其温度指数、温度系数和温度常数进行改进,并使用2003-2013年资料以Penman-Monteith(PM)模型为标准评价HS改进模型计算精度与适应性。结果表明:HS改进模型参数在川中丘陵区各区均小于联合国粮农组织推荐值,并呈现出随纬度上升而增大的趋势;与PM模型计算结果相比,HS改进模型计算的ET0相对误差在川中丘陵区北部从14.2%~60.9%降至-1.1%~33.4%、中部从40.6%~92.6%降至16.9%~61.1%、南部从31.3%~96.0%降至8.5%~64.4%、整个川中丘陵区从32.1%~82.7%降至9.5%~52.6%;相关性分析表明,HS改进模型和PM模型计算的ET0回归曲线的斜率更接近于1(北部1.16、中部1.02、南部0.99、全区1.13),决定系数均达到0.85(P0.01)以上;趋势分析表明,HS改进模型和PM模型计算的ET0变化一致,年内均呈开口向下的抛物线状,年际均呈微小上升趋势。因此,基于贝叶斯原理改进的HS模型在川中丘陵区不同区域变异性较小,适应性较强,具有较高的计算精度,可作为川中丘陵区参考作物蒸散量简化计算的推荐模型。  相似文献   

17.
湛江地区适宜参考作物蒸发蒸腾量计算模型分析   总被引:6,自引:4,他引:6  
用湛江市日平均、旬平均、月平均气象资料,以6种方法计算参考作物蒸发蒸腾量,并以FAO56 Penman-Monteith公式计算结果为标准,评价其他方法在湛江的适用性.结果表明:Hargreaves-Samani方法的年平均参考作物蒸发蒸腾量与FAO56 Penman-Monteith没有显著差异;月平均参考作物蒸发蒸腾量,除个别月份外,其他5种方法与FAO56 Penman-Monteith方法都有显著差异;不同方法计算结果与FAO56 Penman-Monteith法的均方偏差不同的时间尺度表现不同,日值计算,1948 Penman方法最小,Irmark-Allen次之;旬值计算,1948 Penman方法最小,Hargreaves-Samani、Irmark-Allen次之;月值计算Hargreaves-Samani最小,1948 Penman次之.1948 Penman、FAO24 Penman与FAO56 Penman-Monteith法的相关系数较大,Priestley-Taylor、Irmark-Allen次之,Hargreaves-Samani法的较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号