首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the aim of extending vase life of cut dahlia flowers, we investigated the postharvest characteristics of the flowers. Our focus was on the role of ethylene on senescence and on treatments that have extended vase life of other flowers. Continuous exposure to ethylene at 2 or 10 μL L−1 significantly accelerated petal abscission in cut flowers. Flowers continuously immersed in 1 or 10 μL L−1 2-chloroethylphosphonic acid (CEPA) solution wilted earlier than those treated with distilled water (DW) or 0.15 g L−1 citric acid. Ethylene production from the ovary and ray petal was relatively high (4.5 and 0.9 nL g−1 fresh weight h−1, respectively) at harvest, but decreased gradually over 5 days. No remarkable increase in ethylene production was observed during senescence. Silver thiosulfate complex (STS), an inhibitor of ethylene action, did not extend the vase life of cut flowers, although a high silver concentration was detected in flower organs. In contrast, pulse treatment with 1-methylcyclopropene (1-MCP) and dip treatment with 6-benzylaminopurine (BA) extended the vase life of florets, and BA was more effective than 1-MCP when the flowers were held in both DW and CEPA. BA spray treatment extended vase life of cut ‘Kokucho,’ ‘Kamakura’ and ‘Michan’ flowers. These results suggest that dahlia flower senescence is partially regulated by ethylene, and BA is more effective in delaying the senescence of cut dahlia flowers than ethylene action inhibitors.  相似文献   

2.
The effect of 1-methylcyclopropene (1-MCP) on postharvest quality and lignification of Chinese chive scapes (Allium tuberosum Rottler ex Sprengel) was examined during storage at 20 °C. The results showed that the treatment with 0.5 μL L?1 1-MCP significantly delayed weight loss and opening rate of flowers, maintained higher chlorophyll and ascorbic acid contents, inhibited respiration, reduced the activities of the enzymes phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase and peroxidase, and retarded lignin and cellulose accumulation. The results suggest that 1-MCP treatment may be a promising technique to maintain postharvest quality of Chinese chive scapes.  相似文献   

3.
Senescence of detached spinach leaves either untreated or treated with 0.1 or 1.0 μL L?1 1-MCP has been investigated. 1-MCP treated leaves had higher chlorophyll content and photosystem II potential quantum yield (Fv/Fm) and lower solute leakage than untreated leaves after storage in darkness at 23 °C for 6 d, indicating a delay of senescence. Ethylene production was increased in spinach supplemented with 1-MCP after 3 d storage and then declined to the rates of untreated leaves. 1-MCP treated spinach had higher ascorbic acid and glutathione concentrations, and a low oxidised/reduced ratio for both antioxidants. Accumulations of ammonium and protein degradation were reduced by 1-MCP. The results presented here indicate that inhibition of ethylene sensitivity can be successfully used to extend the postharvest life of spinach leaves.  相似文献   

4.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

5.
The effects of postharvest application of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) on ethylene production and fruit quality, and thus on transportation and shelf-life, were evaluated in melting-flesh peaches. AVG (150 mg L−1) significantly reduced ethylene production, and the effect was enhanced in combination with 1-MCP (1 μL L−1). However, fruit treated with AVG alone softened to untreated control levels 2 d after harvest (DAH). Treatment with 1-MCP significantly reduced the rate of softening until 2 DAH, but the fruit rapidly softened thereafter, and reached untreated control levels by 4 DAH. A combination of AVG and 1-MCP significantly reduced fruit tissue softening throughout ripening. The effect of each chemical on flesh firmness indicated that 1-MCP affected fruit response in the early stages of ripening up to 4 DAH, and AVG significantly reduced softening in the latter stages from 4 to 9 DAH. Peaches treated with AVG and 1-MCP retained their ground color during ripening, but the effect of each chemical on color is unclear. The present study indicates that combined treatment with AVG and 1-MCP significantly delays the ripening of melting-flesh peaches.  相似文献   

6.
Previous reports showed that both gaseous and aqueous 1-methylcyclopropene (1-MCP) delay ripening of avocado (Persea americana Mill.), but there are no reports of the influence of 1-MCP on its sensory attributes. The objective of this study was to evaluate the effects of ethylene pretreatment and/or exposure to gaseous or aqueous 1-MCP on fruit ripening and sensory attributes of ‘Booth 7’ avocado, a Guatemalan-West Indian hybrid. Separate experiments were conducted during two seasons (2008 and 2009) with fruit harvested at preclimacteric stage in October (early season) and in November (late season). Fruit from Season 1 were exposed to ethylene (4.07 μmol L−1) for 12 h at 20 °C, and stored for more 12 h at 20 °C in an ethylene-free (ethylene, <0.1 μL L−1) room prior to treatment with either aqueous (1.39 or 2.77 μmol L−1 a.i.) or gaseous (3.15 or 6.31 nmol L−1 a.i.) 1-MCP. Ripening was monitored and firmness, respiration, ethylene production and weight loss were measured. Texture profile analysis and sensory analysis were performed on ripe fruit only (firmness, 10–15 N). Fruit from Season 2 were not exposed to ethylene pretreatment but treated only with aqueous 1-MCP 24 h after harvest. Fruit were assessed exclusively for sensory analysis when ripe (firmness, 10–15 N). Treatment with either 1-MCP formulation effectively delayed ripening from 4 to 10 d for early-season fruit, and from 4 to 6 d for late-season fruit. Higher concentrations of 1-MCP of either formulation had the greatest effect on selected pulp textural parameters of early-season fruit; the gaseous formulation had greater effect on late-season fruit quality than the aqueous formulation. In general, sensory panelists ratings of overall liking were not affected by 1-MCP treatment. Both aqueous and gaseous 1-MCP formulations delayed ripening of the Guatemalan-West Indian ‘Booth 7’ avocado without significant loss in appearance or in sensory attributes and, therefore, could be considered for use as a postharvest treatment for this hybrid.  相似文献   

7.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

8.
Factors that affect the efficacy of 1-methycyclopropene (1-MCP) treatment of apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] include cultivar and maturity. In this study, ‘McIntosh’, ‘Cortland’ and ‘Empire’ apples were categorized by internal ethylene concentrations (IECs) at harvest, treated with 1 μL L−1 1-MCP, and the IECs of individual fruit followed at 30 d intervals during air storage at 0.5 °C for 90 d. IECs at harvest ranged from <0.5 μL L−1 to ≥100 μL L−1, 51 < 100 μL L−1, and 10 < 50 μL L−1 for ‘McIntosh’, ‘Cortland’ and ‘Empire’, respectively. 1-MCP treatment resulted in a decrease of IECs in fruit of all cultivars by day 30 after harvest. During subsequent storage IECs remained low in fruit with <1 μL L−1 at harvest, but in ‘McIntosh’, ‘Cortland’ increased in proportion to IECs at harvest, but not in ‘Empire’. The importance of initial IECs in fruit on the persistence of 1-MCP inhibition of ethylene production was confirmed in a further experiment, in which IECs in untreated and 1-MCP treated ‘McIntosh’ and ‘Empire’ apples were measured for up to 194 d. 1-MCP also decreased 1-aminocyclopropene-1-carboxylic acid (ACC) concentrations in fruit. The results of our study are consistent with the hypothesis that IEC modulates the sensitivity of climacteric fruit to 1-MCP.  相似文献   

9.
Our previous studies demonstrated that tomato fruit (breaker or pink) exposed at the midclimacteric stage to hypobaric hypoxia for 6 h exhibited transient increased sensitivity to subsaturating levels of 1-methylcyclopene (1-MCP). In the present study, we examined the effect of gaseous 1-MCP (500 nL L−1, 20.8 μmol m−3) applied to mid-climacteric (>60% peak ethylene production) tomato fruit under hypobaric hypoxia (10 kPa, 2.1 kPa O2,) for 1 h. Application of 500 nL L−1 1-MCP under atmospheric conditions had little effect on softening and timing and magnitude of peak ethylene production, and moderate effects on respiration and lycopene and PG accumulation. By contrast, midclimacteric fruit exposed to 500 nL L−1 gaseous 1-MCP under hypobaric hypoxia for 1 h showed acute disturbance of ripening. Firmness and hue angle declines were delayed for ten days and peak ethylene production for eleven days compared with trends for the other treatments. Maximum ethylene production did not exceed 50% of maxima for the other treatments and a definitive respiratory climacteric was not observed. Accumulation of internal gaseous 1-MCP was enhanced under hypobaric hypoxia. Internal 1-MCP in fruit exposed to 20 μL L−1 1-MCP (831 μmol m−3) under hypobaric hypoxia for 2 or 10 min averaged 7.5 ± 0.5 and 8.7 ± 1.4 μL L−1, respectively, compared with 0.8 ± 0.3 and 3.9 ± 0.7 μL L−1 in fruit exposed under atmospheric conditions. After 1 h exposure, internal 1-MCP averaged 10.8 ± 2.2 μL L−1 under hypobaric hypoxia compared with 5.3 ± 1.4 μL L−1 under atmospheric conditions. The results indicate that high efficacy of 1-MCP applied under hypobaric hypoxia is due to rapid ingress and accumulation of internal gaseous 1-MCP.  相似文献   

10.
Exogenous ethylene is commonly used as a commercial sprouting inhibitor of potato tubers. The role of ethylene in the control of sprouting of sweetpotato roots, however, is not known. The aim of this study was to investigate the role of ethylene in control of sprouting in sweetpotato roots by observing the effect of an ethylene synthesis inhibitor, aminoethoxyvinylglycine (AVG), and the ethylene antagonist, 1-methylcyclopropene (1-MCP), in the presence and absence of exogenous ethylene on root sprouting and associated sugar accumulation. Continuous exposure to 10 μl L−1 ethylene, 24 h exposure to 625 nl L−1 1-MCP or dipping in 100 μl L−1 AVG all inhibited sprout growth in sweetpotato roots of two varieties over 4 weeks of storage at 25 °C. The observations that both ethylene on its own and 1-MCP, which inhibits ethylene action, inhibit sprout growth indicate that while continuous exposure to exogenous ethylene leads to sprout growth inhibition, ethylene is also required for sprouting. In potato tubers ethylene is required to break dormancy, while continuous exposure inhibits sprout growth.Monosaccharide concentrations in ethylene, 1-MCP or AVG treated roots were lower than in untreated roots, and for ethylene treated roots this was associated with higher respiration rates. This is consistent with the activation of some additional process by ethylene which uses energy through sugar metabolism. 1-MCP and AVG both inhibited this increase in respiration rate and counteracted the decrease in monosaccharide concentrations. 1-MCP presumably counteracts the ethylene stimulation of this process, while the effect of AVG is attributed to its possible inhibitory effects on protein synthesis.  相似文献   

11.
Botrytis cinerea is one of the pathogens resulting in the heaviest commercial losses in ornamental cut flowers, and the severity of grey mould disease partly depends on the presence of ethylene in the storage environment. The efficacy of a β-cyclodextrin-based nanosponge 1:8 (CD-NS) - 1-methylcyclopropene (1-MCP) complex was evaluated as a novel control agent in protecting carnation (Dianthus caryophyllus L. ‘Idra di Muraglia’) cut flowers against B. cinerea infection. Two concentrations of this non-volatile 1-MCP formulation (CD-NS complex, 0.25 and 0.5 μL L−1, a.i.) were compared with commercial gaseous 1-MCP (0.25 μL L−1, a.i.), and an inoculated control. A non-inoculated control was also used to assess the natural infection level. Eleven days after inoculation, the development of grey mould on carnation was significantly reduced (59.9% of flower surface) in cut stems treated with the CD-NS complex at low dosage, compared to the high dosage of the CD-NS complex (91.5%), the commercial gaseous 1-MCP formulation (76.2%) and the inoculated control (100.0%). Endogenous ethylene production was associated with symptom development. Results showed a reduced ethylene production in 1-MCP treated flowers (0.25 μL L−1, a.i., both suspended and gaseous formulation). The CD-NS complex could therefore be an effective alternative to conventional chemicals to protect ornamental cut flowers.  相似文献   

12.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

13.
Wooden bin-stored ‘Bartlett’ pears (Pyrus communis L.) were hydrocooled (HC) or forced-air cooled (FAC) and immediately treated or not with 1-methylcyclopropene (1-MCP) for 24 h. 1-MCP gas concentrations used were 0, 0.3 or 0.6 μL L?1 (called 0, 0.3 and 0.6, respectively). Fruit were subsequently kept at 20 °C for 20 d or stored at ?0.5 °C and 95% RH for 60, 90, 120 or 150 d. After cold storage, fruit were kept at 20 °C for up to 16 d for further ripening. In another experiment, pears stored in wooden bins (W) or plastic bins (P) were all hydrocooled, treated or not with 0.5 μL L?1 1-MCP (called 0.5 and 0, respectively), stored at ?0.5 °C and 95% RH for 0, 30, 60, 90 or 120 d, and transferred to 20 °C for further ripening. In FAC pears, increasing 1-MCP concentrations usually resulted in delayed increases in ethylene production and lower ethylene production rates, as well as delayed softening. In contrast, HC-0.3 pear firmness did not differ from that of HC-0 fruit after cold storage. Generally, HC-0.3 pears displayed higher ethylene production and lower firmness values than FAC-0.3 pears after a 7-d exposure to 20 °C, regardless the length of cold storage. FAC-0.6 pears always showed lower ethylene production rates and higher flesh firmness values than HC-0.6 fruit. Soluble solids concentration was not consistently affected by 1-MCP. FAC-0.3 and HC-0.6 fruit showed higher titratable acidity values than HC-0 fruit after 0, 60, 120 and 150 d of cold storage plus 7 d at 20 °C. Effectiveness of 1-MCP treatments on HC pears was influenced by the bin material; P-0.5 pears were firmer than W-0.5 pears after 7 d at 20 °C, regardless the length of the cold storage. HC-0.5 fruit exposed to ?0.5 °C for 90 d reached eating quality (firmness ≤23 N) by day 7 if placed in W, and by day 21 when stored in P. Results and previous evidence suggest that wet wooden bin material may represent a major though unpredictable source of 1-MCP sorption that could bind a significant percentage of the 1-MCP applied. When used at relatively low doses 1-MCP partial removal by wet wooden bins can compromise the application effectiveness for controlling ethylene action.  相似文献   

14.
The effects of 1-methylcyclopropene (1-MCP) on ripening, superficial scald and concentrations of α-farnesene, conjugated trienols (CTols) and antioxidant enzyme activity of ‘KS6’ Asian pear (Pyrus serotina Rehd.) were studied. 1-MCP treated (2 μL L?1) or untreated control fruit were stored at 1 °C and 90–95% RH for up to 120 days. 1-MCP treated fruit were firmer than untreated fruit. Application of 1-MCP delayed skin color change. Scald appeared after shorter storage duration and was reduced, but not entirely controlled, with 1-MCP. Accumulation of α-farnesene and oxidation were slower in skin of 1-MCP treated fruit compared with controls. Catalase and peroxidase activities in untreated fruit either increased while activities decreased in 1-MCP treated fruit. Superoxide dismutase activity remained stable. The treatment of Asian pears with 1-MCP followed by cold storage maintained textural characteristics with less scald incidence.  相似文献   

15.
Chrysanthemum (White, Yellow, and Daisy), carnation (Master and Barbara), rose (Carola, Black magic, Diana, Champagne, and Avalanche), and Chinese rose (Golden Medallion, Diplomat, Marina, and Athena) are the main Chinese cut flower species produced for exportation. Cut flowers infested with quarantine pests need methyl bromide (MB) fumigation to satisfy phytosanitary requirements of importing countries. Phosphine (PH3) is a potential alternative to methyl bromide. Development of phosphine as a phytosanitary treatment requires information regarding its phytotoxicity to cut flowers. Therefore phosphine fumigation at 24 °C and 2 °C was investigated to evaluate its effects on the postharvest quality of cut flowers. Phosphine fumigation for 6 h with dosages as high as 12.2 mg L−1 at 24 °C produced no adverse effects on flower color, diameter, vase life, and other damage indices (DI) for all cultivars. However, different adverse effects on some cultivars were observed after 12 d fumigation at 2 °C. There were significant changes for color values of Carola, Black magic, Diana, Champagne, Avalanche, and Diplomat; significant decrease in flower diameter and vase life of Diana, Champagne, and Avalanche at 3.04 mg L−1, white Chrysanthemum and Diploma at 1.52 and 3.04 mg L−1; significant increase in DI of Champagne and Avalanche at 3.04 mg L−1, and White chrysanthemum, Diana, and Diploma at 1.52 and 3.04 mg L−1. In combination with information on phosphine toxicity to insect pests at ambient and low temperatures in the literature, it is suggested that phosphine fumigation could be a viable replacement of MB fumigation for quarantine treatment of these four cut flower species.  相似文献   

16.
Gaseous 1-methylcyclopropene (1-MCP) has been widely employed for delaying ripening and senescence of harvested fruit and vegetables; however, details on ingress of gaseous1-MCP in plant tissues, which might contribute to differences in responsiveness of different horticultural commodities to 1-MCP, have not been reported. In this study, we used spinach and bok choi leaves, disks from tomato epidermis, stem-scar and avocado-exocarp tissues, and whole tomato fruit to examine ingress of gaseous 1-MCP. Using a dual-flask system, equilibration of 20 μL L−1 (831 μmol m−3) 1-MCP through leaf tissue was reached within 1–2 h, and paralleled 1-MCP transfer through glass-fiber filter paper. For disks derived from fruit tissues, changes in 1-MCP concentrations in the dual-flask system showed anomalous patterns, declining as much as 70% in source flasks with negligible accumulation in sink flasks. The pattern of 1-MCP distribution was markedly different from that of ethylene, which approached equal distribution with tomato stem-scar and avocado exocarp but not tomato epidermis tissues. 1-MCP ingress was further addressed by exposing whole tomato fruit to 20 μL L−1 1-MCP followed by sampling of internal fruit atmosphere. Tomato fruit accumulated internal gaseous 1-MCP rapidly, reaching approximately 8–9 μL L−1 within 3–6 h at 20 °C. Internal 1-MCP concentration ([1-MCP]) declined around 74 and 94% at 1 and 3 h after exposure, respectively. Ingress was similar at all ripening stages and reduced by 45% in fruit coated with commercial wax. Blocking 1-MCP ingress through stem- and blossom-scar tissues reduced accumulation by around 60%, indicating that ingress also occurs through epidermal tissue. Fruit preloaded with 1-MCP and immersed in water for 2 h retained about 45% of post-exposure gaseous [1-MCP], indicating that 1-MCP is not rapidly sorbed or metabolized by whole tomato fruit. Rapid ingress of gaseous 1-MCP was also observed in tomato fruit exposed to aqueous 1-MCP. Both accumulation and post-exposure decline in internal gaseous [1-MCP] are likely to vary among different fruit and vegetables in accordance with inherent sorption-capacity, surface properties (e.g., waxes, stoma), volume and continuity of gas-filled intercellular spaces, and tissue hydration.  相似文献   

17.
The relationship between fragrance and vase life and the role of ethylene on volatile emission in cut rose flowers was investigated. No relationship was observed between the amounts of volatile compounds emitted and vase life when fragrant and non-fragrant rose cultivars were compared. Neither ethylene production nor respiration rate of flowers was directly related with vase life. Volatile production during vase life was differential and independent among volatiles originating from different biosynthetic groups. Ethylene did not play a role in the regulation of volatile emission in rose flowers. Endogenous ethylene production was very low in most of the cultivars and did not show autocatalytic production trends. Volatile emission patterns during vase life did not parallel endogenous ethylene production. Exogenous ethylene exposure had differential effects among all cultivars, regardless of the fragrance of the flower. Fragrant cultivar ‘Osiana’ was highly sensitive to exogenous ethylene, with petals abscising within 24 h of ethylene (1 μL L?1) exposure while other fragrant cultivars ‘Erin’ and ‘Lovely Dream’ had low ethylene sensitivity. Volatile production was unaffected by exogenous ethylene. The results of this study indicate that volatile emission in cut roses is not regulated by endogenous or exogenous ethylene and occurs independently of petal senescence and/or abscission. These results provide a better understanding of the complexity of volatile emission in rose flowers.  相似文献   

18.
After three months storage at 0.5 °C one quarter of a lot of ‘Anjou’ pears (Pyrus communis L.) were treated with 1 μL L?1 of 1-methylcyclopropane (1-MCP) for 8 h at 20 °C and three quarters of the fruit were left untreated at 20 °C for the same time. Treated and untreated pears were then sliced, dipped in a commercial anti-browning solution and packaged in modified atmospheric bags. Packages, containing slices from 1-MCP treated fruit, were labelled as MCP1. Slices from two thirds of the untreated fruit had one of two secondary treatments applied: (1) multi-functional co-release sachets added to the package at the time of sealing (NT), or (2) an injection of 1-MCP to sealed packages to achieve a final concentration of 1 μL L?1 (MCP2). The last third of the slices from the untreated lot of pears were sealed into packages with no further treatment (CK). The packages were kept at 5 °C. In-package ethylene concentrations were significantly lower for the NT treated slices. NT also significantly delayed and reduced net oxygen consumption in the package headspace compared with other treatments. The NT treatment also reduced incidence of browning induced by enzymes of microbial origin, termed secondary browning (SB), and better maintained the measured juiciness of slices. In contrast, the CK, MCP1 and MCP2 treatments showed a more rapid appearance and severity of SB. Slices in packages treated with NT retained higher tissue levels of butyl, hexyl and pentyl acetate, 6-methyl-5-hepten-2-one, butanol and hexanol during storage than any of the other three treatments.  相似文献   

19.
Fern leaves, also called fronds, are often used in bouquets. Leaves of the sword fern (Nephrolepis cordifolia) consist of a central vascular tissue, with numerous leaflets (pinnae) at each side. Leaves that have been cut and immediately placed in water show abscission of the pinnae, starting from about day 4 of vase life, with 50% pinnae abscission on day 13. The onset of pinnae abscission was hastened by a period of dehydration (3, 6, 9 or 12 h at 25 °C). The time to 50% pinnae abscission was between 7.0 and 4.7 days after 3 h and 12 h of dehydration, respectively. Dehydration treatments might induce air emboli in the xylem, but in these experiments did not inhibit water uptake. Dehydration did increase the rate of ethylene production of the cut leaves throughout vase life. A 3 h treatment with 1-MCP at concentrations of 200 or 300 nL L?1 prior to the period of dehydration reduced the rate of ethylene production and reduced the rate of abscission. 1-MCP treatments were also effective if given after the period of dehydration. The data show that pinnae abscission limits the vase life of cut leaves of the sword fern, and that a short period of water stress drastically increases the rate of abscission. The increase in pinnae abscission was correlated with an increase in ethylene production. As 1-MCP alleviated the effect of dehydration on pinnae abscission, the dehydration effect involved ethylene perception. The data suggest that a small water stress induced an autocatalytic rise in ethylene production which was the direct cause of the increase in pinnae abscission.  相似文献   

20.
To control postharvest decay, table grapes are commercially fumigated with sulfur dioxide. We evaluated ozone (O3) fumigation with up to 10,000 μL L?1 of ozone for up to 2 h to control postharvest gray mold of table grapes caused by Botrytis cinerea. Fumigation for 1 h with 2500 or 5000 μL L?1 of ozone were equal in effectiveness. Both treatments reduced postharvest gray mold among inoculated ‘Thompson Seedless’ grapes by approximately 50% when the grapes were examined after storage for 7 d at 15 °C following fumigation. In a similar experiment, ‘Redglobe’ grapes were stored for 28 d at 0.5 °C following fumigation for 1 h with 2500 or 5000 μL L?1 of ozone. Both treatments were equal in effectiveness, but inferior to fumigation with 10,000 μL L?1. Ozone was effective when grapes were inoculated and incubated at 15 °C up to 24 h before fumigation. The cluster rachis sustained minor injuries in some tests, but berries were never harmed. Ozone was applied in three combinations of time and ozone concentration (10,000 μL L?1 for 30 min, 5000 μL L?1 for 1 h, and 2500 μL L?1 for 2 h) where each had a constant concentration × time product (c × t) of 5000 μL L?1 × h. The effectiveness of each combination was similar. The incidence of gray mold was reduced by approximately 50% among naturally inoculated, organically grown ‘Autumn Seedless’ and ‘Black Seedless’ table grapes, and by 65% among ‘Redglobe’ table grapes, when they were fumigated with 5000 μL L?1 ozone for 60 min in a commercial ozone chamber and stored for 6 weeks at 0.5 °C. Residues of fenhexamid, cyprodinil, pyrimethanil, and pyraclostrobin were reduced by 68.5, 75.4, 83.7, and 100.0%, respectively, after a single fumigation of table grapes with 10,000 μL L?1 ozone for 1 h. Residues of iprodione and boscalid were not significantly reduced. Ozone is unlikely to replace sulfur dioxide treatments in conventional grape production unless its efficacy is improved, but it could be an acceptable technology to use with grapes marketed under “organic” classification, where the use of SO2 is prohibited, or if SO2 use were to be discontinued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号