首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quality, microbiological and enzymatic characteristics of fresh-cut lettuce (Lactuca sativa var. longifolia, ‘Duende’), grown in floating system with three electrical conductivities of nutrient solutions (2.8, 3.8 and 4.8 mS cm?1), were investigated in order to evaluate the effect of salinity on product shelf-life during cold storage (9 d at 4 °C). Pre-harvest salinity of 3.8 and 4.8 mS cm?1 improved the properties of fresh-cut lettuce, since CO2 production was reduced with a subsequent control of the decay process. Fresh-cut processing caused an activation of polyphenol oxidase and peroxidase; in all cases the product obtained by salinity treatments was less subject to oxidase activity and browning phenomena during storage. Increased salinity reduced the number of mesophilic bacteria and of moulds and yeasts, assessed by plate counts on different culture media; in contrast, Enterobacteriaceae levels were unaffected by pre-harvest treatments. The research demonstrated that an increase in nutrient solution electrical conductivity, through the use of floating system, affects fresh-cut lettuce characteristics, improving shelf-life of the product.  相似文献   

2.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

3.
Effects of continuous light exposure (24 μmol m−2 s−1) on browning enzyme activity and total phenol (TP) content in fresh cauliflower heads were investigated during 7 d storage at 7 °C using darkness as the control. Results showed that light exposure inhibited polyphenol oxidase activity (PPO) by 26% and peroxidase (POD) by 16%, as well as lowering the browning index (BI) by 33%, compared to darkness, at the end of storage. Light exposure also induced 43%, 35%, and 20% increases in phenylalanine ammonia lyase (PAL) activity at 1, 3, and 5 d storage, respectively, thus accumulating 41% more de novo TP content than in darkness after 7 d storage. In addition, vitamin C content deteriorated during storage under both light and dark conditions, with light exposure preserving vitamin C content 30% more than in darkness. However, light exposure accelerated fresh weight loss, with the largest value of 1.8% at the end of storage.  相似文献   

4.
This study investigated the impact of pulsed light treatments on microbial quality, enzymatic browning, texture and antioxidant properties of fresh-cut mushrooms. The reduction of the native microflora of sliced mushrooms ranged from 0.6 to 2.2 log after 15 days of refrigerated storage by flashing at 4.8, 12 and 28 J cm−2. Pulsed light treatments allowed extension of the microbiological shelf life of fresh-cut mushrooms by 2–3 days in comparison to untreated samples, while providing a high quality product. The use of high pulsed light fluencies (12 and 28 J cm−2) dramatically affected the texture of sliced mushrooms due to thermal damage induced by the treatments. Enzymatic browning was also promoted by an increase in polyphenol oxidase activity when the highest dose of pulsed light was applied. At 28 J cm−2, phenolic compounds, vitamin C and antioxidant capacity were significantly reduced. Our results suggest that the application of pulsed light at doses of 4.8 J cm−2 could extend the shelf life of fresh-cut mushrooms without dramatically affecting texture and antioxidant properties.  相似文献   

5.
Fresh-cut banana slices have a short shelf-life due to fast browning and softening after processing. The effects of atmospheric modification, exposure to 1-MCP, and chemical dips on the quality of fresh-cut bananas were determined. Low levels of O2 (2 and 4 kPa) and high levels of CO2 (5 and 10 kPa), alone or in combination, did not prevent browning and softening of fresh-cut banana slices. Softening and respiration rates were decreased in response to 1-MCP treatment (1 μL L−1 for 6 h at 14 °C) of fresh-cut banana slices (after processing), but their ethylene production and browning rates were not influenced. A 2-min dip in a mixture of 1% (w/v) CaCl2 + 1% (w/v) ascorbic acid + 0.5% (w/v) cysteine effectively prevented browning and softening of the slices for 6 days at 5 °C. Dips in less than 0.5% cysteine promoted pinking of fresh-cut banana slices, while concentrations between 0.5 and 1.0% cysteine delayed browning and softening and extended the post-cutting life to 7 days at 5 °C.  相似文献   

6.
Ethylene production is enhanced by wounding during fresh-cut processing and the accumulation of this gas within the packages of fresh-cut fruit can be detrimental to their quality and shelf-life. The effect of 1-methylcyclopropene (1-MCP), an ethylene action blocker, applied before or after processing, on the quality of fresh-cut kiwifruit, mangoes and persimmons was evaluated during storage at 5 °C. Fresh-cut ‘Hayward’ kiwifruit slices softened at a slower rate and their ethylene production rate was decreased in response to 1-MCP application (1 μL L−1 for 6 h at 10 °C) either before or after processing. A 2-min dip in 0.09 M (1%, w/v) CaCl2 synergistically increased the effect of 1-MCP on firmness retention and 1-MCP did not affect the color (L* value) of fresh-cut kiwifruit slices. Softening and browning (decreasing L* value) were delayed when 1-MCP was applied directly on fresh-cut ‘Kent’ and ‘Keitt’ mango slices. Respiration rate of mango slices was not influenced by 1-MCP whereas the ethylene production was affected only towards the end of their shelf-life. Fresh-cut ‘Fuyu’ persimmons treated with 1-MCP after processing presented higher ethylene production rate, slower softening rate and slower darkening of color (decrease in L* value), whereas the respiration rate was not affected.  相似文献   

7.
After three months storage at 0.5 °C one quarter of a lot of ‘Anjou’ pears (Pyrus communis L.) were treated with 1 μL L?1 of 1-methylcyclopropane (1-MCP) for 8 h at 20 °C and three quarters of the fruit were left untreated at 20 °C for the same time. Treated and untreated pears were then sliced, dipped in a commercial anti-browning solution and packaged in modified atmospheric bags. Packages, containing slices from 1-MCP treated fruit, were labelled as MCP1. Slices from two thirds of the untreated fruit had one of two secondary treatments applied: (1) multi-functional co-release sachets added to the package at the time of sealing (NT), or (2) an injection of 1-MCP to sealed packages to achieve a final concentration of 1 μL L?1 (MCP2). The last third of the slices from the untreated lot of pears were sealed into packages with no further treatment (CK). The packages were kept at 5 °C. In-package ethylene concentrations were significantly lower for the NT treated slices. NT also significantly delayed and reduced net oxygen consumption in the package headspace compared with other treatments. The NT treatment also reduced incidence of browning induced by enzymes of microbial origin, termed secondary browning (SB), and better maintained the measured juiciness of slices. In contrast, the CK, MCP1 and MCP2 treatments showed a more rapid appearance and severity of SB. Slices in packages treated with NT retained higher tissue levels of butyl, hexyl and pentyl acetate, 6-methyl-5-hepten-2-one, butanol and hexanol during storage than any of the other three treatments.  相似文献   

8.
‘Rojo Brillante’ is an important variety of persimmon that after removal of the astringency with high levels of CO2, maintains firmness and sweetness, making possible its commercialization as a fresh-cut commodity. However, the commercial success of the product is limited mainly by enzymatic browning. This work presents the effect of a wide range of antioxidants on enzymatic browning of ‘Rojo Brillante’ persimmon combining in vitro (extracts and precipitates) and in vivo (cut tissue) studies. Preliminary screening of the antioxidants, determined by absorbance and color measurements of persimmon extracts and pellets, showed that 4-hexylresorcinol (Hexyl), citric acid (CA) and calcium chloride (CaCl2) were effective at controlling browning at 10 mM; whereas, ascorbic acid (AA) required a higher concentration (25 mM). Peracetic acid, cyclodextrin, cysteine, and hexametaphosphate were not effective at controlling browning, even at a concentration of 50 mM. In in vivo studies, AA (1.12%) and CA (0.21%) were the most effective treatments to control enzymatic browning of fresh-cut material, reaching the limit of marketability in 5–7 days, whereas, Hexyl and CaCl2 did not reach 1 day of storage. The results showed that optimum concentrations in cut tissue did not always correlate with the in vitro studies, indicating that antioxidants have an effect not only in browning reactions, but also in metabolic activity and cell wall changes during wound-induced reactions. The results provide relevant information for further development of minimally processed ‘Rojo Brillante’ persimmon during storage at 5 °C.  相似文献   

9.
Two trials were carried out on Butterhead lettuce (March–May 2008 and April–June 2009) to investigate the effect of the application of nitrogen fertilizer (0, 50 and 100 kg ha−1 of N) and of strobilurin (Azoxystrobin, methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate) on (i) yield and morphological traits at harvest, (ii) physical (weight loss and dry matter), visual (chlorophyll content and main colour indices), physiological (relative water content, osmotic potential, and electrolytic leakage), and nutritional (ascorbic acid, nitrate, and polyphenol content) quality of raw material and their changes after storage of fresh-cut leaves. Cool storage lasted 7 and 12 days in the first and second experiment, respectively. In the first cycle, under early-spring conditions, lettuce yield was lower by 38% and, even if the product was lighter coloured [higher L* (+6%) and lower CHL (−21%)], it had lower dry matter content (−32%), higher electrolyte leakage (EL) (+14%) and WLTrans (+8%) compared with the raw product from the second cycle. In both years, the increase of N supply and the application of Azoxystrobin improved yield (by 8.5% and 10%, respectively). The response in N fertilization was more evident under early-spring (2008) compared to late-spring (2009) conditions (12.3% vs. 4.8%), and when (2008) the highest N rate interacted with the application of Azoxystrobin (+12.9% compared with the other treatments). The nitrate content in leaves was always reduced by Azoxystrobin application (−43%) and increased with the N supply (+53%). In the second experiment, when storage was prolonged for 12 days, strobilurin improved postharvest shelf-life by reducing chlorophyll degradation (−27%), senescence (−19%, measured as EL), and browning (−53%, measured as h° index decrease). Azoxystrobin lowered also the total polyphenol content of raw material (−12.5%), which can be linked to less browning during storage. During postharvest storage, irrespective to the preharvest dose, N supply kept the visual quality and physiological senescence indices constant (L*, h° and EL). The suitability of the Butterhead lettuce to fresh-cut processing depends on climatic growing conditions. Preharvest Azoxystrobin supply improves the nutritional quality of the raw material, reducing leaf nitrate content, and the shelf-life in prolonged storage. The N rate of 100 kg ha−1 of N is suitable under less favourable growing conditions, while the rate of 50 kg ha−1 is better for more favourable climatic conditions, especially if a moderate contribution in available N from soil organic matter mineralization and no leaching from heavy rains is expected.  相似文献   

10.
The increased consumption of fresh-cut celery has led to the need to explore packaging alternatives for fresh-cut celery that can meet consumer, market, and industry needs. In this study, the effect of bio-based packaging and non-conventional atmospheres on the quality and safety of chlorine-sanitized celery sticks stored at 7 °C was investigated. Two materials differing in permeability [a bio-based polyester (polylactic acid (PLA)) and a petroleum-based polyolefin (polypropylene/low density polyethylene (PP/PE)] and four initial gas compositions [air (A-PLA or A-PP/PE), 95 kPa O2 + 5 kPa N2 (O2-PLA), 99 kPa N2 + 1 kPa O2 (N2-PLA), and 6 kPa O2 + 12 kPa CO2 + 82 kPa N2 (CO2-PLA)] were evaluated. Changes in headspace composition, weight loss, surface and cut end color, texture, ethanol content, appearance, and growth of Listeria monocytogenes on inoculated celery sticks were assessed during 21 d of storage. Active MAP (CO2-PLA) out-performed passive MAP (A-PLA) in maintaining celery stick quality but not safety. Conventional active MAP (CO2-PLA) out-performed non-conventional active MAPs (O2-PLA and N2-PLA) in maintaining celery stick quality throughout storage, but O2-PLA suppressed L. monocytogenes growth while CO2-PLA promoted growth during the first 10 d of storage. PLA and PP/PE materials affected celery stick quality but not Listeria growth. This study shows that the initial gas composition and packaging material both impact the quality and safety of celery sticks. Overall, the combination PLA and 95 kPa O2 proved most beneficial in maximizing both the safety and quality of celery sticks during one week of storage at 7 °C.  相似文献   

11.
The influences of storage temperature and modified O2 and CO2 concentrations in the atmosphere on the post-cutting life and quality of fresh-cut pineapple (Ananas comosus) were studied. Temperature was the main factor affecting post-cutting life, which ranged from 4 days at 10 °C to over 14 days at 2.2 and 0 °C. The end of post-cutting life was signaled by a sharp increase in CO2 production followed by an increase in ethylene production. The main effect of reduced (8 kPa or lower) O2 levels was better retention of the yellow color of the pulp pieces, as reflected in higher final chroma values, whereas elevated (10 kPa) CO2 levels led to a reduction in browning (higher L values). Modified atmosphere packaging allowed conservation of pulp pieces for over 2 weeks at 5 °C or lower without undesirable changes in quality parameters.  相似文献   

12.
The influence of light on fresh-cut vegetables during storage is controversial, since both positive and negative effects on shelf-life and quality of such products have been observed. In this work, the effect of low-intensity light treatments on lamb's lettuce, a fresh-cut leafy and ready-to-eat vegetable, was investigated during storage at low temperature (6 °C), in comparison with conventional storage (in the dark at 4 °C). Although continuous light treatment (1 cycle of 8 h per day) was deleterious, cycles of light treatments (8 cycles of 1 h per day; 16 cycles of 0.5 h per day) showed positive effects, assessed by evaluating the content of chlorophylls, carotenoids, ATP, glucose and ascorbate. These analyses were performed at the beginning and after 6 days of storage, in comparison with samples stored in the dark at 4 °C. Under low-intensity light treatments, even if performed at a higher temperature (6 °C), the content of such bioactive compounds increased or was at least similar to that found in samples stored in the dark at the same temperature. We suggest that continuous low-intensity light treatments during cold storage of lamb's lettuce are able to promote photosynthesis but, at the same time, induce photo-damage. On the contrary, under intermittent low-intensity light cycles, photosynthesis is only partially activated, while the metabolism of the green tissues is still able to provide carbon moieties for the synthesis of bioactive molecules involved in delaying senescence. Therefore, low-intensity light cycles at 6 °C could contribute to maintain quality of lamb's lettuce, with respect to samples stored in the dark at both 6 and 4 °C. Finally, setting the temperature at 6 °C allows reduction of refrigerator energy consumption during storage.  相似文献   

13.
The potential of humidifying cold storage rooms to control moisture loss and quality of table grapes in different package designs was studied. Fruit were stored in cold rooms (−0.33 ± 0.32 °C or −0.12 ± 0.32 °C) with humidifier (95.0% RH) or no humidification (90.3% RH) respectively. Room humidification resulted in a 7.5% and 9.0% increase in RH inside the clamshell and open-top punnets multi-scale packages respectively in comparison to non-humidified storage, while there was no significant change in RH inside the 4.5 kg carry bag multi-packaging. The grapes were assessed for weight loss and SO2 injury at intervals during a 35 d period. After 21 d of cold storage under humidification, weight loss of grapes was significantly higher (P < 0.05) in packages with open-top punnets than clamshell punnets and carry-bags. After 35 days in non-humidified cold storage, grape weight losses were 1.45 ± 0.32%, 1.62 ± 0.21% and 2.01 ± 0.57% for the 4.5 kg carry-bag, 5 kg clamshell punnet and 5 kg open-top multi-packages, respectively. When fruit were stored inside the same types of multi-packages under humidification, the corresponding weight losses were 0.97 ± 0.34%, 1.08 ± 0.27% and 2.00 ± 0.57%. Cold storage humidification reduced the rate of stem dehydration and browning; however, it increased the incidence of SO2 injury in table grape bunches and caused wetting of the packages.  相似文献   

14.
‘Superior seedless’ table grapes were stored for 7 days at 0 °C followed by 4 days at 8 °C + 2 days at 20 °C under modified atmosphere packaging (MAP). Two polypropylene films (PP) were used to generate the MAP, the micro-perforated PP-30 and an oriented PP (OPP). The OPP film was applied with and without fungicide (10 μL of trans-2-hexenal or 0.4 g Na2S2O5 kg−1). As control a macro-perforated PP was used. PP-30 packages reached the lowest O2 and the highest CO2 levels. Control clusters showed the highest weight losses and decay while almost no losses occurred under MAP treatments. No changes in softness, skin and/or pulp browning, or cluster shatter were found. After shelf life MAP-treated clusters showed slight to moderate stem browning, except under SO2 where practically no browning occurred while control clusters showed an extreme stem browning. After shelf life, MAP treatments showed good visual appearance and crunchiness, while control fruits were unmarketable. No off-flavors were detected for MAP treatments except for hexenal-treated berries. No remarkable changes for color, firmness, soluble solids content, pH, titratable acidity and maturity index were detected. Total sugars content at harvest was 200 g L−1 and only slight decreases were found after shelf life for most treatments. Total organic acids content at harvest was 15.4 mg 100 mL−1, which remained quite constant after cold storage and shelf life. The main phenolic compounds were flavan-3-ols (over 85% from the total content), hydroxycinnamic acid derivatives and flavonols, whose total amount at harvest was 140 mg kg−1 in a fresh weight basis. After shelf life only slight decreases in total phenolics occurred in all treatments. As a main conclusion, SO2-free MAP kept the overall quality of clusters close to that at harvest, with few differences when SO2 was added.  相似文献   

15.
The effects of both 1-MCP treatment of pineapples and packaging of their fresh-cut products with an alternative modified atmosphere (MA: 86.13 kPa N2O, 10.13 kPa O2 and 5.07 kPa CO2) on physiological and quality changes of these minimally processed products were investigated. Fresh-cut fruit treated or not with 1-MCP were packed in Air or in MA and were stored at 4 °C for 10 d. The following parameters were monitored during storage: ripening index; O2, CO2 and C2H4 in the package headspace; firmness and colour. Microbial spoilage of MP pineapple samples was also investigated and a mathematical model based on the Zwietering modified Gompertz equation was used to obtain growth parameters of mesophilic bacteria, yeasts and moulds.The results showed that 1-MCP treatment and MAP in a N2O enriched atmosphere had a positive combined effect on the inhibition of respiration and ethylene production of fresh-cut pineapple and on its softening delay, confirming previous findings about 1-MCP and N2O preservative effects on fresh-cut fruit quality. This combined effect was not extended to the ripening index and colour maintenance, as MAP at 86.13 kPa of N2O did not add any benefit to that of the 1-MCP treatment. From a microbiological point of view, N2O MAP extended the shelf-life of the products of 3–4 d by increasing the lag phase of microbial growth.  相似文献   

16.
Response surface methodology (RSM) and Box–Behnken design were used to study the combined hurdle effect of mild heat time (1–5 min) at 50 °C, ultrasonic processing time (0–10 min) and citric acid concentration (0–2%) on the quality of refrigerated broccoli after 10 d of storage at 5 °C. Treatment effects were evaluated on weight loss, superficial colour (hue angle (H°) and total colour difference (ΔE)), headspace gas composition (O2 and CO2), overall browning potential, chlorophyll content, ascorbic acid content, mesophilic counts and overall visual quality (OVQ) and optimize the process by means of the desirability function. Predicted models were found to be significant with high regression coefficients (91–97%). High regression coefficients indicated that second-order polynomial models could be used to predict and optimize the quality retention in minimally processed broccoli during storage. The mesophilic counts, ascorbic acid content and the overall visual quality were significantly influenced by the three independent variables either independently or interactively. Both thermal and ultrasonic treatments were found to be critical factors influencing changes in chlorophyll content, O2 concentration inside the package, hue angle and ΔE. On the other hand, thermal treatment and citric acid concentration were found to be significant on overall browning potential. By using the desirability function approach and considering superficial colour parameters, O2 concentration, mesophilic counts, browning potential, ascorbic acid and chlorophyll content, the optimum processing conditions were 7.5 min of ultrasonic treatment, 3 min of a heat shock treatment and a citric acid concentration of 1.5%. These results were in good agreement with the maximum found from the canonical analysis performed from the response surface when only considering sensorial analysis. Under these optimal processing conditions it is possible to employ citric acid treatment in combination with ultrasonic and thermal treatments as hurdles for retention of green colour, nutritional quality, microbial control and for extending shelf life of refrigerated minimally processed broccoli.  相似文献   

17.
The anti-listerial effectiveness of selected essential oils (EOs) and shredded fresh herbs (thyme, oregano and rosemary) was examined on a range of modified atmosphere packaged fresh-cut vegetables (lettuce, carrot discs, cabbage and dry coleslaw mix). Anti-listerial effects were in the order: thyme EO > oregano EO > rosemary herb > rosemary EO. While thyme EO demonstrated the best anti-listerial effect, direct application of all the EOs damaged product appearance. Shredded fresh rosemary herb appeared to have a major anti-listerial effect, but shredded fresh thyme and oregano showed no anti-listerial effects. However, fresh rosemary herb was only effective in fresh-cut products when it was stomached with the product prior to microbial analysis. The effectiveness of these antimicrobials varied depending on the product type. Greater anti-listerial effects were recorded on carrot discs and shredded cabbage than on shredded lettuce. Adding shredded carrot to packages enhanced the apparent anti-listerial effects, suggesting a synergistic effect between carrot and rosemary.  相似文献   

18.
Physiological responses and fruit quality of ‘d’Anjou’ pear fruit from five orchard lots were evaluated after cold storage in air or controlled atmospheres (CA) with the O2 concentration based on assessment of fruit chlorophyll fluorescence (CF) or standard conditions (1.5 kPa O2). The pCO2 for all CA fruit was 0.5 kPa. Softening, acid loss, and peel degreening of all lots were delayed at one or more evaluation dates (2, 4, 6, 8 months) by previous storage at the CF pO2 compared with fruit stored in 1.5 kPa O2 or in air. Superficial scald developed on fruit previously stored in air but not on fruit stored in a CA. Pithy brown core developed on fruit from all lots stored at the CF pO2 and on fruit stored at 1.5 kPa in 3 of the 5 lots. Pithy brown core incidence decreased with advanced harvest maturity. Post-storage ethylene and CO2 production were in most instances lowest for fruit stored at the CF pO2. A significant relationship between fruit ethanol content and pithy brown core incidence was observed. Results indicate low pO2 storage based on CF monitoring slows fruit ripening relative to fruit stored at 1.5 kPa O2, prevents superficial scald development compared with fruit stored in air, however, development of pithy brown core in fruit stored at the CF pO2 was not accompanied by a change in CF.  相似文献   

19.
In the present study, three recently patented decontamination agents: peroxyacetic acid combined with lactic acid, and two different combinations of hydrogen peroxide with citric acid (with and without propylene glycol), were compared with sodium hypochlorite and tap water washing regarding their effect on equilibrium modified atmosphere packaged (EMAP) fresh-cut iceberg lettuce. Effects of these sanitizers on respiration rate, electrolyte leakage, microbial levels, and sensory quality of the product after decontamination and during storage (3 d at 4 °C followed by 4 d at 7 °C) were elucidated. Hydrogen peroxide based sanitizers provoked a significant increase in the respiration rate and the electrolyte leakage of fresh-cut iceberg lettuce compared with tap water washing. Peroxyacetic acid combined with lactic acid resulted in similar results to those of tap water washing for all the parameters analyzed. However, other aspects of the combination of peroxyacetic and lactic acids (e.g. efficacy for cross-contamination avoidance) should be assessed in the future in order to determine its suitability for fresh-cut iceberg lettuce processing.  相似文献   

20.
The underlying causes as well as chemical and biochemical alleviation for CO2-induced browning in apple fruit are poorly understood. Ascorbic acid (AsA) dynamics in ‘Braeburn,’ a susceptible cultivar, and ‘Gala’, a resistant cultivar, were evaluated during on-tree development and storage at 0.5 °C in air or controlled atmospheres (CA) containing 1 kPa O2 and 1, 3 or 5 kPa CO2. ‘Braeburn’ fruit treated with diphenylamine (DPA) was also stored for 1 month to determine effects on browning incidence and AsA concentration. ‘Braeburn’ apples had significantly higher (p  0.05) AsA levels than ‘Gala’ during on-tree development, and storage. No correlation between AsA and maturity/ripening indices for ‘Braeburn’ or ‘Gala’ was apparent. Histochemical localization of fruit AsA showed a staining intensity consistent with the quantity analytically determined, and showed that AsA is diffusely distributed throughout the cortex in both cultivars during on-tree development. During storage, AsA was localized to the periphery of brown tissue in ‘Braeburn’ and to the coreline and cortex proximal to the peel in ‘Braeburn’ and ‘Gala’ tissues. DPA decreased browning development during storage, however, no correlation between DPA treatment and AsA quantity in healthy or brown cortex tissue was observed. The results indicate AsA quantity alone is not an indicator of CO2 sensitivity in these two cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号