首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissolved organic matter (DOM) is often considered the most labile portion of organic matter in soil and to be negligible with respect to the accumulation of soil C. In this short review, we present recent evidence that this view is invalid. The stability of DOM from forest floor horizons, peats, and topsoils against microbial degradation increases with advanced decomposition of the parent organic matter (OM). Aromatic compounds, deriving from lignin, likely are the most stable components of DOM while plant‐derived carbohydrates seem easily degradable. Carbohydrates and N‐rich compounds of microbial origin produced during the degradation of DOM can be relatively stable. Such components contribute much to DOM in the mineral subsoil. Sorption of DOM to soil minerals and (co‐)precipitation with Al (and probably also with Fe), especially of the inherently stable aromatic moieties, result in distinct stabilization. In laboratory incubation experiments, the mean residence time of DOM from the Oa horizon of a Haplic Podzol increased from <30 y in solution to >90 y after sorption to a subsoil. We combined DOM fluxes and mineralization rate constants for DOM sorbed to minerals and a subsoil horizon, and (co‐)precipitated with Al to estimate the potential contribution of DOM to total C in the mineral soil of a Haplic Podzol in Germany. The contribution of roots to DOM was not considered because of lack of data. The DOM‐derived soil C ranges from 20 to 55 Mg ha–1 in the mineral soil, which represents 19%–50% of the total soil C. The variation of the estimate reflects the variation in mineralization rate constants obtained for sorbed and (co‐)precipitated DOM. Nevertheless, the estimates indicate that DOM contributes significantly to the accumulation of stable OM in soil. A more precise estimation of DOM‐derived C in soils requires mineralization rate constants for DOM sorbed to all relevant minerals or (co‐)precipitated with Fe. Additionally, we need information on the contribution of sorption to distinct minerals as well as of (co‐)precipitation with Al and Fe to DOM retention.  相似文献   

2.
Mild extractions were used as indicators of easily decomposable organic matter (OM). However, the chemical composition of extracted OM often remained unclear. Therefore, the composition of cold and hot water–extractable OM was investigated in the O horizons (Oi, Oe, Oa) of a 170 y old beech stand (Fagus sylvatica) in the Ore Mtns., SE Germany. To simulate litter decomposition, the O horizon samples were incubated for 1 week under defined conditions. Cold‐ and hot‐water extracts were analyzed and chemically characterized by pyrolysis–field ionization mass spectrometry (Py‐FIMS). The C and N concentrations were always lower in the cold‐(C: 2.69 to 3.95 g kg–1; N: 0.14 to 0.29 g kg–1) than in the hot‐water extracts (C: 13.77 to 15.51 g kg–1; N: 0.34 to 0.83 g kg–1). The C : N ratios of both extracts increased with increasing depth. Incubation increased the concentrations of C and N in all water extracts, while C : N ratios of extracts decreased. The molecular‐chemical composition of cold and hot water–extracted OM revealed distinct differences. Generally, cold water–extracted OM was thermally more stable than hot water–extracted OM. The mass spectra of the hot water–extracted organic matter revealed more intensive signals of carbohydrates, phenols, and lignin monomers. Additionally, the n‐C28 fatty acid and the n‐C38–to–n‐C52 alkyl monoesters clearly distinguished the hot‐ from the cold‐water extract. A principle‐component analysis visualized (1) alterations in the molecular‐chemical composition of cold‐ and hot‐water extracts due to previous incubation of the solid O horizon samples and (2) a decomposition from the Oi to the Oh horizon. This provides evidence that the macromorphological litter decomposition was reflected by the chemical composition of water extracts, and that Py‐FIMS is well‐suited to explain at the molecular level why OM decomposability is correlated with water‐extracted C.  相似文献   

3.
The objective was to develop and adapt a versatile analytical method for the quantification of solvent extractable, saturated long‐chain fatty acids in aquatic and terrestrial environments. Fulvic (FA) and humic (HA) acids, dissolved organic matter (DOM) in water, as well as organic matter in whole soils (SOM) of different horizons were investigated. The proposed methodology comprised extraction by dichloromethane/acetone and derivatization with tetramethylammonium hydroxide (TMAH) followed by gas chromatography/mass spectrometry (GC/MS) and library searches. The C10:0 to C34:0 methyl esters of n‐alkyl fatty acids were used as external standards for calibration. The total concentrations of C14:0 to C28:0 n‐alkyl fatty acids were determined in DOM obtained by reverse‐osmosis of Suwannee river water (309.3 μg g—1), in freeze‐dried brown lake water (180.6 μg g—1), its DOM concentrate (93.0 μg g—1), humic acid (43.1 μg g—1), and fulvic acid (42.5 μg g—1). The concentrations of the methylated fatty acids (n‐C16:0 to n‐C28:0) were significantly (r2 = 0.9999) correlated with the proportions of marker signals (% total ion intensity (TII), m/z 256 to m/z 508) in the corresponding pyrolysis‐field ionization (FI) mass spectra. The concentrations of terrestrial C10:0 to C34:0 n‐alkyl fatty acids from four soil samples ranged from 0.02 μg g—1 to 11 μg g—1. The total concentrations of the extractable fatty acids were quantified from a Podzol Bh horizon (26.2 μg g—1), Phaeozem Ap unfertilized (48.1 μg g—1), Phaeozem Ap fertilized (57.7 μg g—1), and Gleysol Ap (66.7 μg g—1). Our results demonstrate that the method is well suited to investigate the role of long‐chain fatty acids in humic fractions, whole soils and their particle‐size fractions and can be serve for the differentiation of plant growth and soil management.  相似文献   

4.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   

5.
The biochemical quality of soil organic matter (SOM) was studied in various profiles under Quercus rotundifolia Lam. stands on calcareous parent material. Special attention was paid to the question of how biochemical quality is affected by position within the soil profile (upper versus lower horizons). The following global SOM characteristics were investigated: (a) overall recalcitrance, using hydrolysis with either hydrochloric or sulphuric acid; (b) hydrolyzable carbohydrates and polyphenolics; (c) extractability by hot water and quality of the extract; and (d) abundance of inert forms of SOM: charcoal and soot-graphite. The recalcitrance of soil organic carbon (OC) decreases with depth, following the order: H horizons>A horizons>B horizons. In contrast, the recalcitrance of nitrogen is roughly maintained with depth. The ratio carbohydrate C to total OC increases from H to B horizons, due to the increasing importance of cellulosic polysaccharides in B horizons, whereas other carbohydrates are maintained throughout the soil profile at a relatively constant level, 12-15% of the total OC in the horizon. Whereas the quality of the hydrolyzable carbon (measured by the carbohydrate to polyphenolic C ratio) decreases with depth from H to B horizons, the quality of the hot-water extractable organic matter is much higher in B horizons than in A or H horizons. The relative importance of both charcoal and soot-graphitic C and N tends to increase with depth. The ratio black/total is usually higher for N than for C, a result that suggests that inert SOM may represent a relevant compartment in the nitrogen cycle. Overall, our data suggest that in Mediterranean forest soils the organic matter in B horizons could be less stable than often thought.  相似文献   

6.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

7.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

8.
Due to high nitrogen deposition in central Europe, the C : N ratio of litter and the forest floor has narrowed in the past. This may cause changes in the chemical composition of the soil organic matter. Here we investigate the composition of organic matter in Oh and A horizons of 15 Norway spruce soils with a wide range of C : N ratios. Samples are analyzed with solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, along with chemolytic analyses of lignin, polysaccharides, and amino acid‐N. The data are investigated for functional relationships between C, N contents and C : N ratios by structural analysis. With increasing N content, the concentration of lignin decreases in the Oh horizons, but increases in the A horizons. A negative effect of N on lignin degradation is observed in the mineral soil, but not in the humus layer. In the A horizons non‐phenolic aromatic C compounds accumulate, especially at low N values. At high N levels, N is preferentially incorporated into the amino acid fraction and only to a smaller extent into the non‐hydrolyzable N fraction. High total N concentrations are associated with a higher relative contribution of organic matter of microbial origin.  相似文献   

9.
Dissolved organic matter (DOM) is an important part of the microbially utilizable organic matter in soils. This paper describes an incubation experiment by which the lability and mobility of DOM extracted from forest‐floor materials are related to their age and degree of degradation. DOM extracted from a chronosequence of decomposing leaves (green leaves, fresh fallen leaves, litter [1 y weathering], fibric matter [2–3 y], hemic matter [>3 y], or peat [100+ y]) was applied to intact soil cores, and the CO2 produced over 5 d was measured to determine biodegradability. Biodegradability of DOM varied somewhat along the chronosequence, with the green leaves yielding more CO2 on an equal C basis than the older substrates and equivalent to glucose which was used as a reference substrate. Thus, the DOM extracts of the older substrates contain some refractory components. The humic‐acid content (or that of its precursors) of the extracts from older substrates relates to the lowered lability. The hydrophobic and hydrophilic content of DOM extracted from substrates was not related to CO2 production in the incubation studies conducted.  相似文献   

10.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.  相似文献   

12.
Soil water repellency affects the hydrological functions of soil systems. Water repellency is associated with the content and the composition of soil organic matter. In the present study, we examined the effects of hydrophobic and hydrophilic organic matter contents, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content on water repellency using model sandy soils. Stearic acid and guar gum were used as the hydrophobic and hydrophilic organic compounds, respectively. Water repellency was estimated using the sessile drop method. Hydrophobic organic matter content was found to be the dominant factor affecting soil water repellency. Hydrophilic organic matter was found to increase the contact angle to some extent without the presence of hydrophobic organic matter. With the presence of both hydrophobic and hydrophilic organic matter, the effects of the hydrophilic organic matter content on contact angle were found to be dependent on the hydrophobic organic matter content of the soil. This relationship was explained by the differences in the surface free energies of different organic matter and mineral surfaces. The contact angle increased with increasing hydrophobic/hydrophilic organic matter ratio when the hydrophilic organic matter content was constant. When the hydrophobic organic matter content was constant, contact angles were roughly comparable, irrespective of the hydrophobic/hydrophilic organic matter ratio. The contact angles were not comparable at each total organic matter content. Accordingly, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content in soil may not provide satisfactory information about soil water repellency.  相似文献   

13.
We tested the hypothesis whether organic matter in subsoils is a large contributor to organic carbon (OC) in terrestrial ecosystems and if survival of organic matter in subsoils is the result of an association with the soil mineral matrix. We approached this by analyzing two forest soil profiles, a Haplic Podzol and a Dystric Cambisol, for the depth distribution of OC, its distribution among density and particle‐size fractions, and the extractability of OC after destruction of the mineral phase by treatment with hydrofluoric acid (HF). The results were related to indicators of the soil mineralogy and the specific surface area. Finally, scanning electron microscopy combined with energy dispersive X‐ray spectroscopy (SEM‐EDX) was used to visualize the location of OC at mineral surfaces and associations with elements of mineral phases. The subsoils (B and C horizons) contained 40—50% of the soil OC including the organic forest floor layers. With increasing depth of soil profiles (1) the radiocarbon ages increased, and (2) increasing portions of OC were either HF‐soluble, or located in the density fraction d >1.6 g cm—3, or in the clay fraction. The proportions of OC in the density fraction d >1.6 g cm—3 were closely correlated to the contents of oxalate and dithionite‐citrate‐bicarbonate‐extractable Fe (r2 = 0.93 and 0.88, P <0.001). SEM‐EDX analyses suggested associations of OC with aluminum whereas silicon‐enriched regions were poor in OC. The specific surface area and the microporosity of the soil mineral matrix after destruction of organic matter were less closely correlated to OC than the extractable iron fractions. This is possibly due to variable surface loadings, depending on different OC inputs with depth. Our results imply that subsoils are important for the storage of OC in terrestrial ecosystems because of intimate association of organic matter with secondary hydrous aluminum and iron phases leading to stabilization against biological degradation.  相似文献   

14.
The precipitation of dissolved organic matter (DOM) by aluminum (Al) results in a stable soil organic matter (OM) fraction. Extracellular enzymes can also be removed from soil solution by sorption or precipitation, but whether this affects their activity and their importance for carbon (C) mineralization is largely unknown. We studied the activity of eight extracellular enzymes, precipitated by Al together with DOM, in relation to C mineralization of the precipitated OM. Dissolved OM was obtained from the Oi and Oa horizon of two forest soils and precipitated at different Al : C ratios and pH values to achieve a large variation in composition and C mineralization of precipitated OM. All eight enzymes were present in a functional state in precipitated OM. On average 53% of DOM was precipitated, containing on average 17%–41% of the enzyme activity (EA) involved in C degradation (chitinase, cellobiohydrolase, β‐glucosidase, glucuronidase, lacasse, and xylosidase) previously present in soil solution. In contrast, on average only 4%–7% of leucine‐aminopeptidase and acid‐phosphatase activity was found in precipitated OM. The EA found in precipitates significantly increased the percentage of C mineralized of precipitated OM, with a stronger influence of C‐degrading enzymes than enzymes involved in N and P cycling. However, after 8 weeks of incubation the correlations between EA and C mineralization disappeared, despite substantial EA being still present and only 0.5%–7.7% of C mineralized. Thus, degradation of precipitated OM seems to be governed by EA during the first degradation phase, but the long‐term stability of precipitated OM is probably related to its chemical properties.  相似文献   

15.
The high variability of dissolved organic matter (DOM) in natural systems (concentration, composition) means rapid methods are required for its characterization so that a high number of samples can be analyzed. The objective of the present study was to quantify the effects of spectrometer type and dissolved organic carbon (DOC) concentration on the humification indices of water‐soluble fulvic acids (FAs) derived from synchronous fluorescence spectra, and thus enable the broader application of this method for DOM characterization. We used three standard FAs from the International Humic Substances Society, 24 water‐soluble FAs isolated from topsoil, groundwater and surface water in a fen area, and two different spectrometers. The wavelengths at which bands occurred were similar for all the FAs. Therefore, the differences between the spectra of the FAs studied could be described by humification indices (band ratios). The humification indices calculated correlated very well between spectrometers despite small differences in the wavelengths of bands and shoulders. The absolute values of these indices deduced from two spectrometers can only be directly compared if the spectra are corrected using a standard substance. Increasing DOC concentration resulted in a linear increase in humification indices with a sample specific slope. Therefore, we recommend using an uniformly low DOC concentration of about 10 mg C l—1 for recording the spectra of samples with typically low DOC concentrations (aquatic samples, soil solutions). This value is a compromise between relatively low absorption to minimize inner filter effects and a sufficient signal‐to‐noise ratio.  相似文献   

16.
Sustainable agricultural land use requires an assessment of degradable soil organic matter (SOM) because of its key function for soil fertility and plant nutrition. Such an assessment for practical land use should consider transformation processes of SOM and its sources of different origin. In this study, we combined a 120‐day incubation experiment with thermal decay dynamics of agricultural soils altered by added organic amendments. The aim was to determine the abilities and limits of thermal analysis as a rapid approach revealing differences in the degradability of SOM. The carried out experiments based on two independent sampling sets. The first sample set consisted of soil samples taken from non‐fertilized plots of three German long‐term agricultural field experiments (LTAEs), then artificially mixed with straw, farmyard manure, sheep faeces, and charcoal equal to 60 Mg ha?1 under laboratory conditions. The second sample set based on soil samples of different treatments (e.g., crop type, fertilization, cultivation) in LTAEs at Bad Lauchstädt and Müncheberg, Germany. Before and after the incubation experiment, thermal mass losses (TML) at selected temperatures were determined by thermogravimetry indicating the degradability of organic amendments mixed in soils. The results confirmed different microbial degradability of organic amendments and SOM under laboratory conditions. Thermal decay dynamics revealed incubation‐induced changes in the artificial soil mixtures primarily at TML around 300°C in the case of applied straw and sheep faeces, whereas farmyard manure showed mainly changes in TML around 450°C. Charcoal did not show significant degradation during incubation, which was confirmed by TML. Detailed analyses of the artificial soil mixtures revealed close correlations between CO2‐C evolution during incubation and changes in TML at 300°C with R2 > 0.96. Results of the soils from LTAEs showed similar incubation‐induced changes in thermal decay dynamics for fresh plant residues and farmyard manure. We conclude that the practical assessment of SOM could be facilitated by thermal decay dynamics if modified sample preparation and evaluation algorithms are used beyond traditional peak analysis.  相似文献   

17.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

18.
可溶性有机物对土壤中绿麦隆吸附与解吸的影响   总被引:7,自引:0,他引:7  
A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.  相似文献   

19.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

20.
ABSTRACT

Antecedent soil moisture before freezing can affect greenhouse gases (GHG) fluxes from soils during thaw, but their critical threshold values for GHG fluxes and the underlying mechanisms are still not clear. By using packed soil-core incubation experiments, we have studied nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from a mature broadleaf and Korean pine-mixed forest soil and an adjacent white birch forest soil with nine levels of soil moisture ranging from 10 to 90% water-filled pore space (WFPS) during a 2-month freezing at ?8°C and the following 10-day thaw at 10°C. The threshold values of soil moisture ranged from 50 to 70% WFPS for CH4 uptake and from 70 to 90% WFPS for N2O and CO2 emissions from the two soils during the freeze-thaw period. Under the optimum soil moisture condition, fulvic-like compounds with high bioavailability contributed more than 60% of dissolved organic matter (DOM) in the soil. Cumulative N2O emissions from forest soils during the freeze-thaw period were greatest when the concentration ratio of nitrate-N to dissolved organic carbon (DOC) was 0.04 g N g?1 C. Cumulative soil CO2 emissions and CH4 uptake during the freeze-thaw period were both regulated by the interaction between soil DOC and net N mineralization. The activities of β-1,4-glucosidase and β-1,4-N-acetyl-glucosaminidase, microbial biomass C and N, and the microbial biomass C-to-N ratios, were all significantly correlated to the soil N2O, CO2, and CH4 fluxes. Overall, upon a freeze-thaw period with different soil moistures, GHG fluxes from forest soils were jointly regulated by inorganic N and DOC concentrations, and related to the labile components of DOM released into the soil, which could be strictly controlled by the related microbial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号