首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forest floor represents the major source of dissolved organic carbon (DOC) and nitrogen (DON) in forest soils. The release mechanisms of DOC and DON from forest floors and their environmental controls as well as the dynamics of concentrations and fluxes are still poorly understood. We investigated the effect of drying and rewetting on the release of DOC and DON from a Norway spruce forest floor. Undisturbed soil columns of 17 cm diameter and 15—20 cm height were taken with 7 replicates from the forest floor of a mature Norway spruce (Picea abies [L.] Karst.) site and established at 10°C in the laboratory. Columns were exposed to different periods of drying (3, 5, 10, 20 days). Each drying period was followed by a rewetting for 5 days at an irrigation rate of 10 mm d—1 with a natural throughfall solution. The percolates from the forest floor were collected daily and analyzed for DOC, total N, NH4, NO3, pH, electrical conductivity and major ions. Drying for 10 and 20 days decreased the water content of the Oi horizon from 280% dry weight to about 30%. The water content of the Oe and the Oa horizon only changed from about 300% to 200%. The fluxes of DOC from the forest floor were moderately effected by drying and rewetting with an increase after 3 and 5 days of drying, but a decrease after 10 and 20 days. On the contrary, the drying for 10 and 20 days resulted in a drastic increase of the DON fluxes and a subsequent decrease of the DOC/DON ratios in the forest floor percolates from about 50 to 3.3. These results suggest that the mechanisms for DOC release in forest floors differ from those for DON and that drying and rewetting cause temporal variations in the DOC/DON ratios in forest floor percolates.  相似文献   

2.
An intensive survey of mercury speciation was performed at a site on the Upper St. Lawrence River near Cornwall, Ontario, Canada with a history mercury contamination in sediments. Surface sediments were collected every 1.50 h. Total mercury (Hgtotal), methylmercury (MeHg), organic carbon, inorganic and organic sulphur were determined in the solid fraction. Dissolved Hgtotal, MeHg and dissolved organic carbon (DOC) were measured in pore waters. Concentrations of Hgtotal in the upper layers (first 5 cm) were high, ranging from 1.42 to 25.8 nmol g?1 in solids and from 125 to 449 pM in pore waters. MeHg levels were also high, ranging from 4.34 to 34.1 pmol g?1 in solids and from 40 to 96 pM in pore waters. This amounts to up to 1.4% of Hgtotal present as MeHg in solids and 64% in pore waters. A daily pattern for Hgtotal was observed in the solid fraction. The MeHg distribution in solids and pore waters was not correlated with Hgtotal or DOC, suggesting that the concentrations of MeHg are probably more influenced by the relative rates of methylation/demethylation reactions in the sediment–water interface. Acid volatile sulphide levels and DOC were inversely correlated with organic sulphur (Sorg) levels suggesting that both parameters are involved in the rapid production of Sorg. A positive correlation was also observed between Hgtotal and Sorg in solids (R?=?0.87, p?<?0.01) illustrating the importance of organic sulphur in the retention and distribution of Hg in the solid fraction of the sediments. The results suggest that variations of Hgtotal concentrations in Upper St. Lawrence River surface sediments were strongly influenced by the formation/deposition/retention of organic sulphur compounds in the sediment–water interface.  相似文献   

3.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

4.
Schwesig  D.  Ilgen  G.  Matzner  E. 《Water, air, and soil pollution》1999,113(1-4):141-154
Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on their distribution and mobility in soils and catchments of Central Europe. The objective of this study was to investigate the pools and mobility of Hg and CH3Hg+ in different forest soils. Upland and wetland forest soils, soil solutions and runoff were sampled. In upland soils the highest contents of total-Hg were found in the Oh layer of the forest floor (>400 ng g-1) and the storage of non geogenic total-Hg (calculated for 60 cm depth) was about 120 mg/m2. The storage of total-Hg was one order of magnitude lower in wetland soils as compared to the upland soils. By far the largest proportion of total-Hg in soils was bound in immobile fractions. The depth gradients of CH3Hg+ did not correspond to those of total-Hg and the highest contents of CH3Hg+ in upland soils were observed in the litter layer of the forest floor and in the Bsv horizon. The CH3Hg+ content of the wetland soils was generally much higher in comparison with upland soils. CH3Hg+ in solution was found in the forest floor percolates of upland soils and in wetland soils, but not in soil solutions from mineral soil horizons. Gaseous losses of Hg as well as methylation of Hg are likely in wetland soils. The latter might be highly relevant for CH3Hg+ levels in runoff.  相似文献   

5.
Forest floors in the temperate climate zone are frequently subjected to strong changes in soil moisture, but the consequences for the soil N cycle are poorly known. In a field experiment we tested the hypotheses that soil drying leads to a decrease of gross N turnover and that natural rewetting causes a pulse of gross N turnover and an increase of N leaching from the forest floor. A further hypothesis was that optimal water availability induced by irrigation causes maximum N turnover and N leaching. Replicated control, throughfall exclusion and irrigation plots were established in a Norway spruce forest to simulate different precipitation patterns during a growing season. Gross N turnover rates were determined in undisturbed soil cores from Oi + Oe and Oa + EA horizons by the 15N pool dilution technique. Forest floor percolates were periodically collected by suction plates. After 142 mm throughfall was excluded, the median soil water potential at the throughfall exclusion plots increased from pF 1.9 to 4.5 in the Oi + Oe horizon and from pF 1.8 to 3.8 in the Oa + EA horizon. Gross ammonification ranged from 14 to 45 mg N kg−1 soil day−1 in the Oi + Oe horizon and from 4.6 to 11.4 mg N kg−1 soil day−1 in the Oa + EA horizon. Gross ammonification of both horizons was smallest in the throughfall exclusion plots during the manipulation, but the differences between all treatments were not statistically significant. Gross nitrification in both horizons was very small, ranging from 1.6 to 11.1 mg N kg−1 soil day−1. No effects of decreasing water potential and rewetting on gross nitrification rates were observed because of the small rates and huge spatial variations. Irrigation had no effect as the differences from the control in soil water potential remained small. N leaching from the forest floor was not affected by the treatments. Our findings suggest that ammonification in forest floors continues at considerable rates even at small water potentials. The hypotheses of increased N turnover and N leaching following rewetting of dry forest floor or irrigation were not confirmed.  相似文献   

6.
Dissolved organic nitrogen and carbon (DOC) are significant in the C and N cycle in terrestrial ecosystems. Little is known about their dynamics in the field and the factors regulating their concentrations and fluxes. We followed the fluxes and concentrations of the two in a Norway spruce (Picea abies (L.) Karst.) forest ecosystem in Germany from 1995 to 1997 by sampling at fortnightly intervals. Bulk precipitation, throughfall, forest floor percolates from different horizons and soil solutions from different depths were analysed for major ions, dissolved organic N and DOC. The largest fluxes and concentrations were observed in percolates of the Oi layer, which contain amino N and amino sugar N as the major components. The average ratio of dissolved organic C to N in forest floor percolates corresponded to the C/N ratio of the solid phase. Concentrations and fluxes were highly dynamic with time and decreased with depth. The largest fluxes in forest floor percolates occurred when the snow melted. The concentrations and fluxes of dissolved organic N were significantly correlated with DOC, but the correlation was weak, indicating different mechanisms of release and consumption. The dynamics of dissolved organic N and DOC in forest floor percolates were not explained by pH and ionic strength of the soil solution nor by the water flux, despite large variations in these. Furthermore, the release of these fractions from the forest floor was not related to the quality and amount of throughfall. Concentrations of dissolved organic N in forest floor percolates increased with soil temperature, while temperature effects on DOC were less pronounced, but their fluxes from the forest floor were not correlated with temperature. In the growing season concentrations of both dissolved organic N and C in forest floor percolates decreased with increasing intensity of throughfall. Thus, the average throughfall intensity was more important than the amount of percolate in regulating their concentrations in forest floor percolates. Our data emphasize the role of dissolved organic N and DOC in the N and C cycle of forest ecosystems.  相似文献   

7.
The relative contributions of litter and humified organic matter as the source of dissolved organic carbon (DOC) leached from organic layers of forest soils are poorly understood. In the present investigation, 13C labelled spruce litter was used to study the role of recent litter in the leaching of DOC from a coniferous forest floor in southern Sweden, while litterbags were used to quantify the total loss of C from the labelled litter. The labelled litter applied on bare lysimeters released considerable amounts of DOC during the first weeks, but the concentration of DOC originating from labelled litter decreased gradually from 176 mg litre−1 during the first sampling period in May to 5 mg litre−1 in the last sampling period in October. Only a moderate flush of DOC from the labelled litter occurred under the Oe and Oa horizons, with concentrations of 20 and 6 mg litre−1 from labelled litter, equal to 19 and 9% of the total DOC flux, respectively, during the first sampling period. Total flux of DOC from labelled litter from May to September was 16 g m−2, whereas only 2.2 and 0.9 g m−2 were captured under the Oe and Oa horizons, respectively. The almost complete loss of new DOC implies that DOC leached from the Oe and Oa horizons consists not of recent litter‐derived carbon, but of DOC produced in these two horizons themselves. Water‐extractable organic carbon from labelled litter left in litterbags in the field for 4 months consisted of about one‐third native carbon from external sources at the experimental site and two‐thirds of the labelled litter. In contrast, the 13C content of the bulk litter from the litterbags was not changed by the incubation in the field. We suggest that the soluble native carbon in water extracts originated from throughfall DOC that had been assimilated by microorganisms in the litterbags.  相似文献   

8.
Composition and effects of additions of fibric (Oi) and hemic/sapric (Oe + Oa) layer extracts collected from a 20-year-old stand of radiata pine (Pinus radiata) on soil carbon dioxide (CO2) evolution were investigated in a 94-day aerobic incubation. The 13C nuclear magnetic resonance spectroscopy indicated that Oi layer extract contained greater concentrations of alkyl C while Oe + Oa layer extract was rich in carboxyl C. Extracts from Oi and Oe + Oa layers were added to a forest soil at two different polyphenol concentrations (43 and 85 μg g−1 soil) along with tannic acid (TA) and glucose solutions to evaluate effects on soil CO2 efflux. CO2 evolution was greater in amended soils than control (deionized water) indicating that water-soluble organic carbon (WSOC) was readily available to microbial degradation. However, addition of WSOC extracted from both Oi and Oe + Oa layers containing 85 μg polyphenols g−1 soil severely inhibited microbial activity. Soils amended with extracts containing lower concentrations of polyphenols (43 μg polyphenols g−1 soil), TA solutions, and glucose solutions released 2 to 22 times more CO2-C than added WSOC, indicating a strong positive priming effect. The differences in CO2 evolution rates were attributed to chemical composition of the forest floor extracts.  相似文献   

9.
Deposition of methylmercury (MeHg) and mercury (Hg) to a coniferous forest have been investigated using field measurements. Samples of open field (OF) wet deposition, throughfall (TF) and litterfall (LF) have been collected and analyzed for MeHg and Hg during the period November 1991 to April 1994. Average concentrations in TF were 22.8 and 0.38 ng L?1, for Hg and MeHg, respectively. Concentrations in OF precipitation were 11.9 and 0.37 ng L?1, for Hg and MeHg, respectively, during the same period. Considerable differences were found for Hg in TF and OF which was attributed to a dry deposition of Hg. Hg in LF contributes a deposition of equal size as in TF. The relations between OF, TF and total Hg deposition were approximately 1∶1,5∶3. A decrease in OF Hg was found over the three year period studied. MeHg deposition in OF was also found to decrease during the same period whereas the TF MeHg showed a slight increase. Dry deposition of MeHg is also an important process in a coniferous forest although the flux to the forest floor is not via TF but rather as MeHg in LF.  相似文献   

10.
Abstract

We measured the concentration and composition (sensu Leenheer, 1981) of dissolved organic carbon (DOC) in lysimeter solutions from the forest floor of a spruce stand in Maine and in laboratory extracts of organic (Oa horizon) and mineral soils collected from various forests in Maine, New Hampshire, and Vermont. All soils were acid Spodosols developed from glacial till. The effects of different storage, extraction and filtration methods were compared. Extracts from Oa horizons stored fresh at 3°C contained a larger fraction of hydrophobic neutrals than lysimeter forest floor solutions (31 and 4% of DOC in stored and lysimeter solutions, respectively), whereas extracts from Oa horizons which had been extracted, incubated at 10–15°C, and extracted again had DOC compositions similar to that in lysimeter solutions. Mechanical vacuum and batch extractions of Oa horizons yielded DOC similar in concentration and composition if the extracts were filtered through glass fiber filters. Nylon membrane filters, however, removed more hydrophobic acids from batch extracts. Dissolved organic carbon extracted from frozen, air‐dry, and oven‐dry Oa and Bh horizons was relatively rich in hydrophilic bases and neutrals and was similar to that released after chloroform fumigation, indicating that common soil‐storage methods disrupt microbial biomass.  相似文献   

11.
The DyDOC model simulates the C dynamics of forest soils, including the production and transport of dissolved organic matter (DOM), on the basis of soil hydrology, metabolic processes, and sorption reactions. The model recognizes three main pools of soil C: litter, substrate (an intermediate transformation product), and humic substances. The model was used to simulate the behavior of C in the O horizon of soil under a Norway spruce stand at Asa, Sweden, that had been subjected to experimental manipulations (addition and removal) of above‐ground litter inputs and to removal of the Oi and Oe layers. Initially, the model was calibrated using results for the control plots and was able to reproduce the observed total soil C pool and 14C content, DOC flux and DO14C content, and the pool of litter C, together with the assumed content of C in humic substances (20% of the total soil C), and the assumed distribution of DOC between hydrophilic and hydrophobic fractions. The constant describing DOC exchange between micro‐ and macropores was estimated from short‐term variations in DOC concentration. When the calibrated model was used to predict the effects of litter and soil manipulations, it underestimated the additional DOC export (up to 33%) caused by litter addition, and underestimated the 22% reduction in DOC export caused by litter withdrawal. Therefore, an additional metabolic process, the direct conversion of litter to DOC, was added to the model. The addition of this process permitted reasonably accurate simulation of the results of the manipulation experiments, without affecting the goodness‐of‐fit in the model calibration. The results suggest that, under normal conditions, DOC exported from the Asa forest floor is a mixture of compounds derived from soil C pools with a range of residence times. Approximately equal amounts come from the litter pool (turnover time 4.6 yr), the substrate pool (26 yr), and the humic‐substances pool (36 yr).  相似文献   

12.
The forest floor at high elevation spruce-fir sites from southern Vermont, U.S. to the Gaspé Peninsula, Québec, Canada was sampled and analyzed in 1979 and re-sampled and analyzed in 1996 to study temporal changes in the impacts of atmospheric pollutants. We determined organic matter mass, pH, and concentrations of Al, Ca, Fe, K, Mg, Na, Cd, Cu, Hg, Pb, and Zn for the litter (L = fresh litter plus Oi horizon) and fermentation plus humic horizons (F+H) (= Oe plus Oa horizons) of the forest floor. There were no trends for Al or Fe concentrations in the 1979 or 1996 L along the transect. Several sites had significantly lower Al and Fe values in 1996 than in 1979, likely indicating less mineral soil in the 1996 samples. The 1996 concentrations of Ca in L increased along the transect from 0.22% dry weight (dw) in Vermont to 0.60% dw in Québec. Concentrations of Mg in L were relatively constant along the transect. Neither Ca nor Mg changed at sites from 1979 to 1996, indicating unchanged base status. Concentrations of Cd did not vary spatially along the transect but decreased at all sites from 1979 to 1996. Cu and Zn did not vary spatially or with time. In 1979, the concentration of Hg in L ranged between 150 and 300 μg kg?1 dw, with no spatial gradient. By 1996, Hg concentrations were 25 to 50% lower in L, with decreases generally proportional to the concentration in 1979. The concentration of Pb in 1979 L decreased significantly from 200 mg kg?1 dw in southern Vermont to 60 mg kg?1 dw in Québec. By 1996, the Pb concentration in L ranged between 32 and 66 mg kg?1 dw with no spatial trend along the transect. Decreases in Pb concentrations at sites were proportional to the absolute value in 1979. The concentrations of Cd, Hg, and Pb have declined in litter from 1979 to 1996, indicating a decline in atmospheric deposition. Higher Hg and Pb accumulation rates to the southwest are suggested for the past as indicated by (F+H) concentrations and inventories of Hg and Pb. The decline of Pb in L is consistent with the decreased use of leaded gasoline starting in the 1970s; the declines in Cd and Hg probably reflect lower emissions over the same period. Declining concentrations of Cd, Hg, and Pb in L parallel those documented in recent lake and peat sediments in the northeastern United States.  相似文献   

13.
This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P > 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0.13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134±48 ng Hg g-1 dry weight, compared to 103±23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41±0.22 compared to Hadlock soils with an average pH of 2.99±0.13.To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed.Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20±0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07±0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota.  相似文献   

14.
Mild extractions were used as indicators of easily decomposable organic matter (OM). However, the chemical composition of extracted OM often remained unclear. Therefore, the composition of cold and hot water–extractable OM was investigated in the O horizons (Oi, Oe, Oa) of a 170 y old beech stand (Fagus sylvatica) in the Ore Mtns., SE Germany. To simulate litter decomposition, the O horizon samples were incubated for 1 week under defined conditions. Cold‐ and hot‐water extracts were analyzed and chemically characterized by pyrolysis–field ionization mass spectrometry (Py‐FIMS). The C and N concentrations were always lower in the cold‐(C: 2.69 to 3.95 g kg–1; N: 0.14 to 0.29 g kg–1) than in the hot‐water extracts (C: 13.77 to 15.51 g kg–1; N: 0.34 to 0.83 g kg–1). The C : N ratios of both extracts increased with increasing depth. Incubation increased the concentrations of C and N in all water extracts, while C : N ratios of extracts decreased. The molecular‐chemical composition of cold and hot water–extracted OM revealed distinct differences. Generally, cold water–extracted OM was thermally more stable than hot water–extracted OM. The mass spectra of the hot water–extracted organic matter revealed more intensive signals of carbohydrates, phenols, and lignin monomers. Additionally, the n‐C28 fatty acid and the n‐C38–to–n‐C52 alkyl monoesters clearly distinguished the hot‐ from the cold‐water extract. A principle‐component analysis visualized (1) alterations in the molecular‐chemical composition of cold‐ and hot‐water extracts due to previous incubation of the solid O horizon samples and (2) a decomposition from the Oi to the Oh horizon. This provides evidence that the macromorphological litter decomposition was reflected by the chemical composition of water extracts, and that Py‐FIMS is well‐suited to explain at the molecular level why OM decomposability is correlated with water‐extracted C.  相似文献   

15.
Recent evidence from nitrogen (N) saturation studies indicates that forest floors in moderately impacted forests are the primary sink for atmospheric N inputs. Some researchers have suggested that the sink capacity of organic horizons is dependent on the amount of available carbon (C), which can be used for microbial N assimilation. To test the hypothesis that C limitation in forest floors exposed to chronic N deposition leads to an enhanced N leaching, a field C input manipulation experiment is under way in a deciduous forest. Since September 1999 aboveground C input has been doubled (by doubling litter input or by amending glucose) or excluded in replicated plots. Here we report the short-term response of concentrations of dissolved inorganic N (DIN: NO3 ?-N and NH4 +-N) in forest floor percolate to the C input manipulation. In autumn following the C input manipulation, DIN concentrations in forest floor percolate decreased in all plots except the No Litter plots compared to the pre-treatment summer concentrations. In contrast, the concentrations of DIN in the No Litter plots remained high. A different seasonal pattern of DIN leaching among treatments, along with measurements of microbial biomass C and potential nitrification rates of forest floor samples, indicates that seasonal N dynamics in the forest floor are largely regulated by C availability changes assoicated with litterfall C input.  相似文献   

16.
Dissolved organic carbon (DOC) and nitrogen (DON) are important components of the carbon and nitrogen turnover in soils. Little is known about the controls on the release of DOC and DON from forest floors, especially about the influence of solid phase properties. We investigated the spatial variation of the release of DOC and DON from Oe and Oa forest floor samples at a regional scale. Samples were taken from 12 different Norway spruce sites with varying solid phase properties, including C/N ratio, pH, different fractions of extractable carbon and exchangeable cations. Most of these solid phase properties are available for large forested areas of Europe in high spatial resolution. The samples were incubated at water holding capacity for eight weeks at 15°C and then extracted with an artificial throughfall solution to measure DOC and DON release. The rates of soil respiration and N-mineralization were determined to estimate soil microbial activity. The release of DOC and DON from Oe samples was two- to threefold higher than from Oa samples. The amounts released differed by one order of magnitude among the sites. The DOC/DON ratios in the percolates of the Oa samples were much higher as compared to the solid phase C/N, indicating different release rates of DOC and DON. In contrast, the DOC/DON ratios of the Oe percolates were in the range of the C/N ratios of the solid phase. The release of DOC and DON from Oe samples was not statistically correlated to any of the measured solid phase parameters, but to N-mineralization. The DOC and DON release from the Oa samples was positively related only to pH and soil respiration. Overall it was not possible to explain the large spatial variation of DOC and DON release by the measured solid phase properties with satisfying accuracy.  相似文献   

17.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

18.
Acid rain results in losses of exchangeable base cations from soils, but the mechanism of base cation displacement from the forest floor is not clear, and has been hypothesized to involve mobilization of aluminum from the mineral soil. We attempted to test the hypothesis that losses of calcium from the forest floor were balanced by increases in Al in NewHampshire northern hardwoods. We measured exchangeable (six stands) and acid extractable (13 stands) Ca and Al in horizons of the forest floor over an interval of 15 years. Our sampling scheme was quite intensive, involving 50 or 60 blocks per stand, composited in groups of 10 for chemical analysis. Even at this level of effort, few stands exhibited changes large enough to be significant. Because of high spatial variability, differences would have had to be greater than about 50% to be statistically detectable. Differences in Ca and Al concentrations between Oi, Oe, Oa, and A horizons, however, were readily detected. Acid-extractable Al increased with depth, while Ca concentrations decreased; Ca-to-Al ratios decreased from 8.3 (charge basis) in the Oi to 0.2 in the A horizon. Therefore, a small change in sampling depth, or the inclusion of more or less A horizon material in the forest floor, could cause large differences in measured Ca and Al concentrations. To detect small changes in exchangeable cations over time would require sampling very intensively with careful control for comparability of horizons.  相似文献   

19.
Accumulation of soil carbon is mainly controlled by the balance between litter production and litter decomposition. Usually In Mediterranean forests there are contrasting conditions in the distribution of faunal activity and the moss layer that may have different effects on litter decomposition. Decomposition and faunal activity were studied by exposing litter of contrasting quality (Pinus halepensis Mill. and Quercus ilex L.) for 3.5 yr in three Mediterranean pine forests of the eastern Iberian Peninsula. The effects of mosses on decomposition and on faunal activity were studied by exposing P. halepensis litter either on moss patches or directly on the forest floor. Faecal pellet production was used as an indication of faunal activity. Water availability or soil characteristics seem to limit faunal activities in the drier sites. Faecal pellets were not found during the first stages of decomposition and in all sites they appeared when about a 30% of the initial litter had decomposed. Under wet conditions faecal pellet production was very high and a mass balance suggested that soil faunal activity may result in a net flow of organic matter from the lower organic horizons to the surface Oi horizon. Mosses slightly increased mass loss of pine litter probably as a consequence of high potentially mineralizable nitrogen in the Oa horizon of moss patches and also, perhaps, as a consequence of the higher moisture content measured in the Oi horizon needles sampled among the mosses. In contrast, moss patches reduced faunal activity. The effect of litter quality on mass loss was not always significant, suggesting an interaction between litter quality and site conditions. During the first stages of decomposition there was N immobilisation in P. halepensis litter (poorer in N) and N release from Q. ilex litter (richer in N). In conclusion, in these forests soil microclimate and/or N availability appear to be more important controlling litter decomposition than the distribution of faunal activity.  相似文献   

20.
Changes in the soil water regime, predicted as a consequence of global climate change, might influence the N cycle in temperate forest soils. We investigated the effect of decreasing soil water potentials on gross ammonification and nitrification in different soil horizons of a Norway spruce forest and tested the hypotheses that i) gross rates are more sensitive to desiccation in the Oa and EA horizon as compared to the uppermost Oi/Oe horizon and ii) that gross nitrification is more sensitive than gross ammonification. Soil samples were adjusted by air drying to water potentials from about field capacity to around −1.0 MPa, a range that is often observed under field conditions at our site. Gross rates were measured using the 15N pool dilution technique. To ensure that the addition of solute label to dry soils and the local rewetting does not affect the results by re-mineralization or preferential consumption of 15N, we compared different extraction and incubation times.T0 times ranging from 10 to 300 min and incubation times of 48 h and 72 h did not influence the rates of gross ammonification and nitrification. Even small changes of water potential decreased gross ammonification and nitrification in the O horizon. In the EA horizon, gross nitrification was below detection limit and the response of the generally low rates of gross ammonification to decreasing water potentials was minor. In the Oi/Oe horizon gross ammonification and nitrification decreased from 37.5 to 18.3 mg N kg−1 soil d−1 and from 15.4 to 5.6 mg N kg−1 soil d−1 when the water potential decreased from field capacity to −0.8 MPa. In the Oa horizon gross ammonification decreased from 7.4 to 4.0 mg N kg−1 soil d−1 when the water potential reached −0.6 MPa. At such water potential nitrification almost ceased, while in the Oi/Oe horizon nitrification continued at a rather high level. Hence, only in the Oa horizon nitrification was more sensitive to desiccation than ammonification. Extended drought periods that might result from climate change will cause a reduction in gross N turnover rates in forest soils even at moderate levels of soil desiccation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号