首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
芥菜开花整合子SOC1与AGL24相互作用能够调节开花时间。为了深入研究SOC1与AGL24蛋白互作的分子机理,利用ISIS系统在线预测了SOC1/AGL24互作位点,并分别在MIKC型蛋白SOC1和AGL24的K域构建了5个SOC1突变体和3个AGL24突变体。酵母双杂交和β–半乳糖苷酶活性检测表明:突变体AGL24R137L和AGL24E169L能够与SOC1蛋白互作,但作用强度与SOC1/AGL24差异不显著;然而AGL24蛋白第107位的谷氨酰胺突变为亮氨酸后(AGL24Q107L),则与SOC1的作用消失。说明SOC1/AGL24的作用强度能够被AGL24蛋白K域第107位调节,但可能不受第137和169位调控。进一步研究发现:SOC1V77K、SOC1P81K、SOC1K108V、SOC1R109L和SOC1C137K突变体均能与AGL24相互作用;但SOC1V77K、SOC1P81K、SOC1K108V和SOC1R109L突变体与AGL24的作用强度均显著低于SOC1/AGL24,而SOC1C137K突变体与AGL24的作用显著高于SOC1/AGL24。说明SOC1/AGL24的作用强度能够被SOC1蛋白K域第77、81、108、109位负调控或者第137位正调控。这为利用氨基酸位点调节SOC1/AGL24的深入研究及其开花时间分子调控奠定了基础。  相似文献   

2.
为阐明芥菜开花抑制因子SVP基因的表达特性及其与FLC蛋白互作的调节机制,从‘青叶芥’中克隆了SVP基因。定量PCR分析表明:低温春化途径和长日照光周期途径中SVP在叶片和茎尖均有表达。营养生长初期表达量较低(茎尖和叶片中平均相对表达量分别为0.56和0.35),生殖生长早期则显著增加(春化途径的茎尖和叶片分别为0.60和1.27,光周期途径的茎尖和叶片分别为0.49和1.42)。茎尖中SVP对低温春化的反应比光周期敏感;而叶片中SVP对光周期的反应比低温敏感。酵母双杂交和 β–半乳糖苷酶活性测定显示:SVP蛋白I域突变体SVPE90L以及K域突变体SVPK104C和SVPH106I均会削弱SVP/FLC2蛋白的互作,但不会导致相互作用消失。SVP蛋白K域突变体SVPR137L能完全破坏SVP/FLC2的互作,但SVPR137L仍然能与芥菜FLC1、FLC3、FLC4和FLC5相互作用,说明SVP/FLC2的蛋白互作受到SVP第137位氨基酸的特异性调控。序列比对发现:芥菜FLC4和FLC5氨基酸序列完全相同,它们与FLC3仅有1个变异位点;FLC2与FLC1、FLC3、FLC4-5之间分别有28、19、18个变异位点;FLC2与FLC1、FLC3、FLC4或FLC5均不相同的位点有11个。推测FLC2与FLC家族其他成员之间的变异位点很可能对SVPR137L/FLC2特异性调控有贡献。  相似文献   

3.
 为阐明芥菜开花路径核心调节子SVP与FLC相互作用的结构域,从酵母重组质粒pGADT7SVP、pGBKT7FLC分别亚克隆了5个SVP截短体(SVP1 ~ 5)和5个FLC截短体(FLC1 ~ 5)。SVP1 ~ 5与FLC1 ~5编码蛋白的结构域均分别为MI、MIK、K、IKC和KC。利用酵母双杂交体系,分别构建酵母猎物质粒pGADT7SVP1 ~ 5与诱饵质粒pGBKT7FLC1 ~ 5,并转化对应的酵母Y187、Y2HGold菌。酵母转化子Y187[pGADT7SVP2 ~ 5]能与Y2HGold[pGBKT7FLC]融合,并可在选择性固体培养基QDO/X/A上长出蓝色菌落,表明FLC能与截短体蛋白SVP2 ~ 5异源结合,SVP的K域(SVP3)可独立作用于FLC蛋白。此外,Y187[pGADT7SVP]× Y2HGold[pGBKT7FLC2 ~ 5]也能同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,表明FLC的K域(FLC3)也可独立作用于SVP。进一步研究发现:Y187[pGADT7SVP3]× Y2HGold[pGBKT7FLC3]正向杂交以及Y187[pGADT7FLC3]× Y2HGold[pGBKT7SVP3]载体互换后杂交均可相互作用,表明SVP的K域(SVP第96 ~ 173位氨基酸区域)与FLC的K域(FLC第114 ~ 167位氨基酸区域)能够异源结合,是介导SVP与FLC蛋白互作的关键结构域。  相似文献   

4.
为阐明芥菜开花抑制因子AGL18与开花整合子SOC1间的互作调控机制,在芥菜‘QJ’的开花期克隆了AGL18-1,幼苗期克隆了AGL18-2和AGL18-3,它们分别编码257、257和258个氨基酸,为AGL18家族的3个成员。序列比对表明,芥菜AGL18家族成员与十字花科芜菁和油菜同源性均高达90%。酵母双杂交和BiFC试验表明:芥菜AGL18-1、AGL18-2和AGL18-3蛋白与SOC1不会发生蛋白相互作用。酵母单杂交和Dual-Glo~ Luciferase试验表明:AGL18-1、AGL18-2和AGL18-3中仅有花期AGL18-1蛋白与SOC1启动子间存在互作。为进一步筛选AGL18-1/SOC1的互作区域,分别截取了AGL18-1蛋白的M域和IKC域,发现仅M域与SOC1启动子存在相互作用,说明M域是介导花期AGL18-1蛋白与SOC1启动子互作的关键区域。这为深入研究AGL18与SOC1互作的分子机制及其对开花时间的调控奠定了基础。  相似文献   

5.
蒋炜  周雯文  李朝闯  闫凯  王宇  王志敏  宋明  汤青林 《园艺学报》2017,44(10):1905-1913
为阐明青花菜(Brassica oleracea var.italica)开花促进因子AGL19与开花整合子AGL24和SOC1蛋白的互作机制,从青花菜中克隆了AGL19、SOC1及AGL24基因。它们分别编码221、221和214个氨基酸,均为MIKC型蛋白,并且与甘蓝、油菜、大白菜等亲缘关系较近,AGL19与SOC1同属TM3/SOC1亚家族成员。酵母双杂交表明:AGL19与AGL24蛋白能互作,激活酵母报告基因AUR1-C、HIS3、ADE2和MEL1,在QDO/X-α-Gal/Ab A平板培养基上长出蓝斑;但与SOC1蛋白不能相互作用,说明AGL19的直接靶蛋白是AGL24而非SOC1。此外,青花菜SOC1也能与AGL24蛋白互作,说明AGL19可以通过AGL24间接与SOC1相互作用。  相似文献   

6.
 为深入研究芥菜开花信号整合子的两个核心调节因子SHORT VEGETATIVE PHASE(SVP)与FLOWERING LOCUS C(FLC)相互作用的分子机理,通过PCR扩增,从芥菜材料‘QJ’中分别克隆含EcoRⅠ/BamHⅠ双酶切位点的SVP和FLC编码区全长,并利用酵母双杂交体系,将FLC与GAL4报告基因DNA 激活域融合(pGADT7FLC),SVP与GAL4报告基因DNA 结合域融合(pGBKT7SVP)。两种重组质粒分别转化酵母Y187和Y2HGold后未出现自激活和毒性现象。融合的二倍体酵母(pGADT7FLC × pGBKT7SVP)能在选择性固体培养基QDO/X/A(SD/-Ade/-His/-Leu/-Trp/X-α-Gal/AbA)上生长,并且菌落呈蓝色。将诱饵质粒(pGBKT7SVP)与猎物质粒(pGADT7FLC)载体互换(pGADT7SVP、pGBKT7FLC),再次转化酵母后仍能融合成二倍体酵母(pGADT7SVP × pGBKT7FLC),并同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,由此表明SVP与FLC蛋白能够相互结合。  相似文献   

7.
 为探明芥菜开花负调因子SVP、FLC 自身聚合的分子机制及其蛋白作用模式,利用酵母双 杂交体系,分别对SVP、FLC 蛋白自身聚合及其作用强度进行研究。结果表明:酵母菌Y187 转化子 Y187-pGADT7SVP 和Y187-pGADT7SVP2 ~ 5 均能与酵母菌Y2HGold 转化子Y2HGold-pGBKT7SVP 融合, 并可在选择性固体培养基QDO/X/A 上长出蓝色菌落,而Y187-pGADT7SVP1 × Y2HGold-pGBKT7SVP 不 能在QDO/X/A 生长。说明SVP 蛋白能自身聚合,且与截短体SVP2 ~ 5 同源结合,SVP 蛋白自身聚合需 要核心作用域K 域参与。尽管MI 域不能单独介导SVP 自身聚合,但它的存在却能使SVP 自身聚合作用 增强,C 域有可能会削弱该作用。同时,Y2HGold-pGBKT7FLC 和Y2HGold-pGBKT7FLC2 ~ 5 也能与 Y187-pGADT7FLC 融合,同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,FLC 能与截短体FLC2 ~ 5 同源互作。K 域是FLC 蛋白自身聚合必须的,I 域会增强这一作用。SVP 和FLC 的核心作用域K 域均由 K1、K2 和K3 亚域组成,形成3 个经典的α 螺旋,K 域有9 个高度保守的氨基酸位点及蛋白互作的结构 模体(亮氨酸拉链)。  相似文献   

8.
为了深入研究芥菜开花整合子SOC1基因的表达调控机制,利用染色体步移法从芥菜‘QJ’中克隆了SOC1编码区上游782 bp的启动子,并构建SOC1基因启动子的酵母表达载体pAbAi-SOC1,与蛋白表达载体pGADT7-FLC、pGADT7-SVP共转化酵母Y1HGold菌株。酵母单杂交表明:芥菜FLC和SVP蛋白均能与SOC1的启动子相互作用。进一步分析发现:SOC1启动子含3个CArG-box表达调控基序。分别亚克隆这3个基因片段(SOC1-1、SOC1-2和SOC1-3),并再次构建酵母重组质粒pAbAi-SOC1-1、pAbAi-SOC1-2和pAbAi-SOC1-3,与pGADT7-FLC、pGADT7-SVP分别融合到Y1HGold菌株。融合菌株均能在相应SD/-Leu/AbA培养基上生长,说明SOC1-1、SOC1-2和SOC1-3都能被芥菜FLC、SVP蛋白识别并结合。再次构建SOC1-1、SOC1-2、SOC1-3的CArG-box删除突变体及A-T互换突变体,则均不能与FLC、SVP蛋白互作。由此说明:SOC1-1、SOC1-2和SOC1-3的3个CArG-box基序确实能特异性识别FLC、SVP,发生DNA-蛋白相互作用。这为利用启动子调控SOC1基因的转录表达等深入研究奠定了理论基础。  相似文献   

9.
 为深入研究甘蓝Flowering Locus C(FLC)家族与SHORT VEGETATIVE PHASE(SVP)蛋 白互作的分子机理及其对开花的调控作用,从甘蓝‘ZQ-67’材料中克隆了5 个FLC 家族基因(记为 BoFLCy1 ~ BoFLCy5)。它们均编码MIKC 型蛋白,按进化关系其编码蛋白可分为两类:BoFLCy3 和BoFLCy5 为第Ⅰ类,仅在C 域有1 个位点变异;BoFLCy1、BoFLCy2 和BoFLCy4 为第Ⅱ类,仅在K、C 域分别有1、 2 个位点变异。酵母双杂交显示:甘蓝BoFLC 家族蛋白均可与BoSVP 蛋白互作;但BoFLCy4 蛋白最为敏 感,其N 端插入3 个氨基酸TET 会破坏该作用。β–半乳糖苷酶活性分析表明:BoFLCy1 ~ BoFLCy5 与 BoSVP 互作强度差异显著,强弱关系为:BoFLCy1 > BoFLCy2 > BoFLCy3 > BoFLCy5 > BoFLCy4,该家族蛋 白KC 域内的变异位点若为疏水氨基酸则有利于FLC/SVP 聚合。进一步分析突变BoFLCy4 蛋白IK 域内 的保守位点发现:蛋白作用强度可能不受I 域的这些保守性亲(疏)水氨基酸(第63、77 位)影响,而 会受到K 域保守氨基酸(第120、121、135、157 位)的亲(疏)水性调节。  相似文献   

10.
汤青林  刘智宇  杨朴丽  宋明  王志敏 《园艺学报》2013,40(12):2441-2452
 为阐明开花负调因子BjSVP(源于种子春化型作物芥菜)与BoFLC(源于绿体春化作物甘 蓝)异源聚合后在开花调控路径中的互作机制,从芥菜酵母重组质粒pGADT7-BjSVP 分别亚克隆含MI、 MIK、K、IKC、KC、IK、IK1L1K2L2、IK1L1K2、IK1L1、IK1、I 结构域的11 个SVP 截短体(BjSVPΔ1 ~ BjSVPΔ11), 构建猎物质粒pGADT7-BjSVPΔ1 ~ pGADT7-BjSVPΔ11 并转化酵母Y187 菌;从甘蓝中克隆了BoFLC 和 BoFLCzq 基因,构建诱饵质粒pGBKT7-BoFLC、pGBKT7-BoFLCzq 并转化酵母Y2HGold 菌。酵母双杂 交表明:芥菜BjSVP 能与甘蓝BoFLC 相互作用,在QDO/X/A 培养基上长出蓝色菌落,激活酵母报告基 因AUR1-C、HIS3、ADE2、MEL1。截短体BjSVPΔ2 ~ BjSVPΔ5 也能与BoFLC 相互作用,而BjSVPΔ7 ~ BjSVPΔ11 不能与BoFLC 互作。由此表明BjSVP 完整的K 域(BjSVP3)可独立作用于BoFLC,但K 域 亚域(K1、K2、K3)或者连接区(L1、L2)缺失突变后不能介导该作用。作用强度分析表明:BjSVP 的I 域能增强该蛋白互作,但M 域和C 域可能会干扰该作用;芥菜BjFLC 被甘蓝BoFLC 或BoFLCzq 替 换后,可明显增加作用强度;甘蓝FLC 的I 域第20 位、K 域第65 位和C 域第32 位氨基酸的变异很可能 与作用强度相关。  相似文献   

11.
王宇  蒋炜  闫凯  周雯文  王志敏  魏大勇  汤青林 《园艺学报》2018,45(12):2383-2394
为阐明青花菜(Brassica oleracea var. italica)开花抑制因子AGL18、HDA9与开花信号整合子AGL24以及SOC1之间的互作机制,分别克隆了青花菜AGL18和HDA9基因,它们与十字花科甘蓝、芜菁等同源性较高。AGL18编码258个氨基酸,其蛋白属于MIKC型。HDA9编码426个氨基酸,其蛋白属于HDAC亚家族。酵母双杂交及GST pull-down结果表明:AGL18与HDA9无蛋白互作,说明它们彼此间不能直接协同作用。AGL18与开花促进因子AGL19也无互作,暗示它们以相对独立的方式抑制或促进开花。HDA9与AGL24、SOC1均不能蛋白互作,然而AGL18能与AGL24蛋白互作却不能与SOC1互作,AGL24能与SOC1互作。由此表明AGL18可通过AGL24间接作用于SOC1。  相似文献   

12.
汤青林  许俊强  宋明  王志敏 《园艺学报》2011,38(12):2317-2324
 为了深入研究调控芥菜开花信号整合子的两个核心转录因子Flowering Locus C(FLC)和SHOTR VEGETATIVE PHASE(SVP)的作用机理和进行人工调控,以芥菜‘QJ’为材料,采用RT-PCR技术分别扩增FLC和SVP的编码序列,构建原核表达质粒pET43.1a-FLC、pET43.1a-SVP,转化宿主菌大肠杆菌BL21,通过SDS-PAGE检测该蛋白的表达。利用免疫共沉淀原理及pET43.1a-FLC、pET43.1a-SVP融合蛋白序列中的6 × His标签能与Ni+结合的特点,对芥菜FLC与SVP的相互作用进行SDS-PAGE检测。结果表明:FLC与SVP能在体外相互作用并形成复合体,为深入分析FLC与SVP间的作用机理以及探讨其与下游开花信号整合子元件的相互作用提供了理论和技术基础。  相似文献   

13.
李茂福  杨媛  王华  刘佳棽  金万梅 《园艺学报》2017,44(10):1949-1958
以月季‘月月红’(Rosa chinensis‘Slater’s Crimson China’)花瓣为材料,利用同源克隆法鉴定到1个Rcb HLH基因的c DNA全长序列,并研究了其生物信息学特征、组织特异性表达及其与MYB和WD40的互作关系。序列分析表明,Rcb HLH的开放阅读框长2 112 bp,编码703个氨基酸,基因登录号为KY783912。结构域序列分析显示,Rcb HLH为一个保守的N端含有碱性氨基酸的DNA结合区、C端含有α螺旋–环–α螺旋的b HLH蛋白。对Rcb HLH进行系统进化分析发现,Rcb HLH与草莓及其他蔷薇科植物的b HLH蛋白具有较高的同源性。组织特异性实时定量RT-PCR分析揭示Rcb HLH基因主要在花瓣中表达。酵母双杂交结果显示,Rcb HLH能与Pav MYB和Pav WD40相互作用形成MYB-b HLH-WD40复合物。以上结果为进一步研究Rcb HLH的功能鉴定奠定了基础。  相似文献   

14.
大白菜开花相关基因FLC1的BAC克隆筛选及分析   总被引:3,自引:0,他引:3  
采用改良的混合池构建方法构建大白菜BAC文库一级混合池和二级混合池,利用开花相关基因FLC1特异引物对其进行PCR筛选。通过三步PCR扩增、114个PCR反应,筛选了19 200个克隆,获得了2个FLC1单克隆。克隆测序结果表明,其扩增产物的序列与大白菜FLC1的相似性达到99%,证实此克隆为含FLC1基因的BAC克隆。  相似文献   

15.
根据拟南芥AtICE1蛋白序列在苹果基因组中Blast比对得到苹果同源蛋白序列,利用DNAMAN软件设计特异性引物并克隆苹果冷信号基因(MDP0000662999),暂命名为MdICE1。以从新疆红肉苹果与‘富士’杂交F1代中选出的‘紫红3号’叶片诱导出的红色愈伤组织为试材克隆MdICE1,测序发现该基因的开放阅读框长度为1 626 bp,编码541个氨基酸。进化树分析表明,MdICE1与AtICE1在同一进化支上,推测它们具有相似的功能。氨基酸序列比对发现,MdICE1存在bHLH基序。低温处理有利于苹果愈伤组织花青苷的累积;与培养在24 ℃下的愈伤组织相比,低温(8 ℃)诱导苹果愈伤组织冷信号基因MdICE1以及花青苷合成相关转录因子基因MdMYB10和MdbHLH3的表达。酵母双杂交试验证明MdICE1可以与MdMYB10相互作用;亚细胞定位发现MdICE1蛋白存在于细胞核内;转化大肠杆菌并诱导获得了MdICE1的重组蛋白,为进一步研究MdICE1蛋白在花青苷代谢途径中的功能奠定了基础。  相似文献   

16.
为了进一步研究RhNAC31在胁迫响应中的作用机制,以RhNAC31蛋白为诱饵,利用酵母双杂交系统在切花月季‘萨曼莎’失水胁迫cDNA文库中进行了互作蛋白的筛选和分析。根据RhNAC31的转录激活区域(C端,157~286 aa)的序列特征,将其划分为C1(157~250 aa,RhNAC31-C1)和C2(251~286 aa,RhNAC31-C2)两段,分别构建到pGBKT7上检测其自激活活性及对酵母Y2H Gold细胞的毒性。结果显示,pGBKT7-RhNAC31-C1和pGBKT7-RhNAC31-C2对酵母Y2H Gold细胞均没有毒性,能激发金担子素A(Aureobasidin A,AbA)报告基因的表达,具有自激活活性,在含有400 ng·mL-1 Ab A的SD缺陷型培养基上其活性受到抑制,以含该浓度AbA的培养基作为筛选文库培养基。在此筛选条件下,在酵母双杂交文库中筛选到21个阳性克隆,对其测序并用Blast比对获得了16个与RhNAC31互作的候选蛋白。利用Uniprot网站对互作蛋白进行基因本体学分析,结果显示RhNAC31能够与RZFP34、MIEL1、RUB泛...  相似文献   

17.
枯萎病是节瓜生产中的主要病害,节瓜抗性材料中CqWRKY31受致萎毒素镰刀菌酸(FA)胁迫诱导表达,为节瓜响应FA胁迫的正调控因子.为深入挖掘CqWRKY31的功能,本试验利用酵母双杂交技术筛选CqWRKY31的互作蛋白.试验结果显示,共得到45个与节瓜CqWRKY31有潜在互作关系的蛋白.通过进一步回转验证,发现42...  相似文献   

18.
牛晓伟  唐宁安  范敏 《园艺学报》2012,39(10):1958-1966
 尖孢镰刀菌在与寄主的相互作用中分泌几个特定的富含半胱氨酸的小分子量蛋白(15.8 ~ 29.9 kD)进入木质部中启动致病力,被称为SIX(Secreted in xylem)蛋白。其中,SIX6蛋白是一个致病因子。西瓜专化型尖孢镰刀菌Fon(Fusarium oxysporum f. sp. niveurn)是引起西瓜枯萎病的病原真菌。为了解与FonSIX6存在相互作用的西瓜蛋白及其信号传导途径,克隆了FonSIX6基因,将FonSIX6的编码区与酵母GAL4的DNA结合功能区融合,构建成酵母诱饵蛋白表达载体pGBKT7-SIX6,进而转化到酵母菌株Y2H Gold中,经检测证实不具有毒性和自激活功能,可以用于酵母双杂交研究。同时,以国际上公认的抗枯萎病材料PI296341-FR构建酵母表达文库。采用酵母双杂交的方法,筛选到14个相互作用靶蛋白。分析筛选到的蛋白主要参与寄主的能量代谢、光合作用和基因表达调控,推测FonSIX6作用的靶位点主要是破坏寄主能量系统并影响光合作用,而寄主对其响应的方式是调控抗病基因的表达。  相似文献   

19.
 将来自甘蓝的BoFLC3 基因和拟南芥的AtFT 基因在芥菜中单独或共同表达发现,BoFLC3超量表达后,无论是长日照还是短日照条件下,转基因芥菜植株开花时间均明显延后;BoFLC3 超量表达植株低温春化处理后,相对于未春化处理的转基因植株出现花期提前现象,但仍晚于非转基因对照植株;AtFT 基因超量表达植株开花时间比非转基因对照植株大幅度提前。BoFLC3 植株与AtFT 植株杂交获得的BoFLC3 和AtFT 共表达植株开花时间与非转基因对照基本接近,显示BoFLC3 和AtFT 基因超表达对植物开花时间的影响效应可以相互抵消。同时,超量表达BoFLC3 基因的芥菜植株抗寒性大幅度提高,而AtFT基因的超量表达不影响植株抗寒性,表明BoFLC3 基因可能参与了植物的抗寒反应。  相似文献   

20.
洋葱开花相关基因AcLFY 的克隆与表达分析   总被引:1,自引:0,他引:1  
叶阳阳  陈典  王勇 《园艺学报》2013,40(2):283-291
 以洋葱(Allium cepa L.)品系‘1007’为试材,采用同源基因克隆及RACE-PCR 的方法, 获得植物开花调控关键基因LEAFY 的同源基因的cDNA 序列,命名为AcLFY,GenBank 登录号为 JX275962。序列分析表明,该基因包含1 个1 119 bp 的开放阅读框,编码372 个氨基酸,该氨基酸序列 含有5′-N 端脯氨酸富集区,亮氨酸拉链结构和中央酸性区,具有LEAFY(FLO)家族的典型结构特征。 同源分析表明,该氨基酸序列与水仙的同源性接近70%,与其他高等植物LEAFY 类蛋白的同源性均在 50%以上。进化树分析表明AcLFY 与单子叶植物的亲缘关系高于双子叶植物。荧光定量结果显示,AcLFY 在洋葱抽薹开花的整个过程中都有表达,在抽薹初期的花序分生组织中表达量最高,在花器官中只有微 量表达,花器官形成后,主要在叶片中表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号