首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
以紫斑牡丹(Paeonia rockii)花芽为试验材料,采用RT-PCR的方法克隆得到1个牡丹开花调控的重要转录因子SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1(SOC1)基因的同源基因PrSOC1,其cDNA开放阅读框长度为678 bp,3′非编码区为421 bp,编码225个氨基酸,GenBank登录号为KJ427808。序列比对和结构域分析表明,此蛋白包含典型的MADS-box和K-box结构域,C末端还含有一个保守性很高的基序-SOC1 MOTIF,与葡萄中的SOC1蛋白最为相似。系统进化树分析表明,PrSOC1与葡萄VvSOC1的亲缘关系最近,属于MADS基因家族中的SOC1/TM3亚家族。半定量RT-PCR表明,PrSOC1基因在紫斑牡丹花芽中的表达量最高,根、茎、叶片中次之,种子中最少。在不同品种牡丹的花芽中,PrSOC1和其光周期途径上游的CO家族基因PsCOL4的表达量没有显著的品种间差异,推测PrSOC1具有很高的保守性,可能是参与牡丹成花的重要基因。利用原核表达系统成功表达了PrSOC1蛋白,并构建了PrSOC1的植物超表达载体,为进一步研究PrSOC1的功能奠定了基础。  相似文献   

2.
荔枝APETALA1(AP1)同源基因cDNA全长克隆及其表达研究   总被引:3,自引:0,他引:3  
 应用RT-PCR方法克隆得到荔枝AP1同源基因cDNA全长,命名为LcAP1(基因登录号:JN214349)。LcAP1基因开放阅读框738 bp,编码245个氨基酸,推测蛋白质分子量为28.39 kD,等电点为9.69。序列分析显示,LcAP1基因编码的蛋白在1 ~ 61氨基酸含有1个MADS盒结构域,在89 ~ 179氨基酸有1个K盒结构域。蛋白质二级结构预测表明,LcAP1基因编码的蛋白有3个α螺旋,2个β折叠区,8个β转角。同源分析表明,LcAP1基因在不同植物中的一致性为72% ~ 82%。半定量RT-PCR分析表明,在‘三月红’荔枝花芽分化期,LcAP1基因在成熟叶、幼叶、老茎、嫩茎、花芽和花梗中均表达,在花芽中表达最多。  相似文献   

3.
以‘秋发1号'和‘洛阳红'牡丹(Paeonia suffruticosa)为试验材料,采用RT-PCR的方法从花芽中克隆得到1个隐花色素基因Cryptochrome 2,其ORF全长为1902 bp,编码633个氨基酸,基因登录号为KP982893。序列比对和结构域分析表明,此蛋白包含1个PHR和1个CCT结构域,与拟南芥中AtCRY2最为相似,将其命名为PsCRY2。系统进化树分析表明,PsCRY2与甜橙(Citrus sinensis)CsCRY2亲缘关系最近。实时荧光定量PCR表明,PsCRY2在牡丹的不同组织器官中均有表达。其中,成年植株的花芽以及种子胚的表达量最高,幼苗根、茎、叶次之。在整个花芽分化不同时期,PsCRY2的表达呈现较高的表达水平;在花蕾发育不同时期,PsCRY2的表达呈现先降低再升高而后有降低的趋势,大风铃期表达量最高,推测PsCRY2在花芽分化和花蕾发育的过程中均起到重要作用。在‘洛阳红'和‘秋发1号'牡丹春季花芽发育过程中,PsCRY2的表达均呈升高的趋势,‘秋发1号'显著高于‘洛阳红'。不同光周期条件下,PsCRY2表达稍有不同。与长日照条件相比,短日照条件下PsCRY2在现蕾期和小风铃期的表达量均下降。  相似文献   

4.
低温胁迫下龙眼碳酸酐酶基因(CA)的克隆与表达分析   总被引:1,自引:0,他引:1  
陈虎  何新华  罗聪  杨丽涛  黄杏  胡颖 《园艺学报》2012,39(2):243-252
 应用蛋白质组学研究低温胁迫下龙眼叶片蛋白质组变化时发现碳酸酐酶(CA)蛋白下调表达。利用RT-PCR方法克隆CA基因的全长cDNA,GenBank登录号JN033201,长度为1 119 bp,包括1个966 bp的开放阅读框,编码321 bp的氨基酸序列,同源性分析表明,12个不同植物同源性为81% ~ 88%。龙眼CA基因具有典型的CA结构域,并且非常保守。实时荧光定量分析结果表明,CA在龙眼根、茎、叶中都有表达,为组成型表达,在叶中的表达量最高,茎和根中的表达量最少。CA基因在低温胁迫下随着低温胁迫时间的延长而发生变化。将CA在大肠杆菌中表达,获得1个约40.5 kD的外源蛋白。推测CA表达与低温胁迫有关。  相似文献   

5.
 采用RT-PCR方法从‘凤丹’牡丹(Paeonia ostii‘Fengdan’)种子中克隆得到1个与ABA信号途径相关的转录因子基因PobZIP1,并利用超高效液相色谱—串联质谱(UPLC–MS/MS)的方法测定了不同发育时期种子的ABA含量。PobZIP1 cDNA全长957 bp,编码318个氨基酸,其编码的蛋白C末端含有bZIP转录因子的典型结构域,GenBank登录号为KJ009392。PobZIP1蛋白与拟南芥bZIP转录因子聚类分析显示,PobZIP1转录因子属于拟南芥bZIP转录因子的A亚族,与AtbZIP39/ABI5聚在一起。与其他物种bZIP蛋白的系统进化分析表明,牡丹PobZIP1与蔷薇科的苹果bZIP亲缘关系最近。SqRT-PCR结果表明:PobZIP1在‘凤丹’牡丹根、茎、叶和花芽中均有表达,其中花芽中的表达量最低,根、茎、叶中的表达量相近。在种子发育过程中,PobZIP1的表达呈现出先增加后降低的趋势。ABA含量测定结果显示,随着种子的发育ABA含量迅速上升,达到最大值后缓慢下降并保持在较高水平。推测种子发育后期,较高含量的ABA和表达相对较高的PobZIP1可能是诱导种子休眠形成的原因。  相似文献   

6.
以'玛瑙红'樱桃根系为试材,采用RT-PCR技术,克隆了'玛瑙红'樱桃CpARF7基因,并对其进行生物信息学分析和表达分析,以期为进一步研究'玛瑙红'樱桃CpARF7基因调控及生长发育提供参考依据.结果 表明:CpARF7的开放阅读框为3498 bp,编码1165个氨基酸,包含B3、Auxin-resp和AUX_ IAA 3个结构域,是结构域完整的ARF转录因子;系统进化树分析表明CpARF7与甜樱桃同源蛋白的亲缘关系最近.荧光定量PCR结果显示,CpARF7基因在不同组织中均有表达,且在根、花芽、成熟果实组织中的表达量最高;200 mg·L-1 IAA处理下,CpARF7在花芽中的转录水平受到诱导,6、24 h时最高;而在200 mg·L-1 ABA处理下,花芽中CpARF7转录水平受到抑制.推测CpARF7可能是与'玛瑙红'樱桃根系、花芽、果实生长发育相关的转录因子,参与调控'玛瑙红'樱桃IAA、ABA激素信号转导的过程.  相似文献   

7.
苹果MdGLRs家族基因生物信息学鉴定和表达分析   总被引:2,自引:1,他引:1  
 利用生物信息学策略对苹果MdGLRs家族基因编码蛋白的氨基酸序列的基本特征、二级结构、跨膜区域、亲疏水性、基因亚细胞定位及保守结构域进行了预测和分析,与拟南芥AtGLRs家族的20个基因进行了氨基酸序列比对和进化树分析,并对这些基因在不同营养生长器官中进行了表达分析。结果表明,苹果MdGLRs家族包含32个基因,分为3个亚族,大部分基因编码800个氨基酸以上,多含有3个跨膜区域,二级结构主要以α–螺旋、无规则卷曲、折叠延伸链为主;亚细胞定位预测发现,MdGLRs蛋白主要定位在内质网和质膜上;MdGLRs蛋白的保守结构域是S1-M1-M2-M3-S2-M4;大多数基因在根、茎、叶中普遍都有表达,在叶中的表达量最高。  相似文献   

8.
 利用RT-PCR技术从辣椒中克隆到基因CaCOI1,该基因编码的蛋白质由603个氨基酸残基组成,蛋白质的分子量为68.35 kD,等电点是6.32。在蛋白质N–端有1个F-box结构域,C–端有6个富含亮氨酸结构域。二级结构分析表明,CaCOI1蛋白分子中,α–螺旋、β–折叠、β–转角和不规则卷曲分别为51.41%、13.76%、5.80%和29.03%。CaCOI1蛋白的平均亲水系数为–0.143,为亲水蛋白。蛋白质序列比对和进化树分析表明,CaCOI1与番茄LeCOI1蛋白的一致性最高(94%),进化距离最近。实时定量RT-PCR分析表明,CaCOI1在辣椒的根、茎、幼叶、成熟叶、花、青熟期果实、成熟红果等不同生长发育时期的组织中都能表达,在花中表达水平最高,是其他组织的2.8 ~ 5.4倍,表明CaCOI1在花的发育过程中起重要作用。  相似文献   

9.
菊花花发育基因CmCO和CmFT的克隆与表达分析   总被引:2,自引:0,他引:2  
  利用同源序列法结合RACE技术从菊花‘神马’品种[Chrysanthemum morflorium(Ramat.)Kitam.‘Jinba’]中分离了开花时间相关的CO(CONSTANS)和FT(FLOWERING LOCUS T)同源基因,并命名为CmCO(基因登录号JF488070)和CmFT(基因登录号JF488071)。CmCO和CmFT分别编码382和174个氨基酸。蛋白比对发现,CmCO蛋白包含具有典型的CO同源蛋白结构,包含B-box1,B-box2,CCT结构域及COOH区域。CmFT所推测的氨基酸序列包含FT类蛋白保守基序和两个关键性氨基酸残基。同源性分析表明,CmCO与草莓(Fragaria × ananassa)FaCO同源性最高,为65.8%,与豌豆(Pisum sativum)PsCOL、拟南芥(Arabidopsis thaliana)AtCO同源性分别为62.0%和55.6%。CmFT与向日葵(Helianthus annuus)HaFT2基因同源性最高,为93.7%,与葡萄(Vitis vinifera)VvFT和拟南芥AtFT的同源性分别为85.1%和74.0%。进化树聚类分析表明,CmCO和CmFT蛋白分别与向日葵HaCO和HaFT2遗传距离最近。RT-PCR表明,长日照下的菊花叶片中几乎检测不到CmCO和CmFT,而在短日照下,CmCO在花芽分化启动期(Ⅰ)表达,总苞鳞片分化前期(Ⅱ)有所下降随后又迅速升高;CmFT在CmCO之后表达,之后持续高表达。选择小花原基分化前期(Ⅳ)对菊花叶片、花芽和茎等不同组织器官CmCO和CmFT表达进行分析,结果表明,CmCO在叶片中表达量最高,花芽次之,茎最低;CmFT在花芽中表达量最高,叶片次之,茎最低。由此推测CmCO和CmFT的表达与光周期诱导菊花成花密切相关。  相似文献   

10.
以‘长富2号’苹果为试验材料,采用RT-PCR的方法,从其芽中克隆得到INDETERMINATE DOMAIN(IDD)转录因子基因MdIDD7,其开放阅读框长度为1 626 bp,编码541个氨基酸。序列比对和结构域分析表明,该转录因子含有1个核定位信号和4个高度保守的锌指蛋白结构域。系统进化树分析表明,MdIDD7与白梨(Pyrus×bretschneideri,XP_009364602.1)、桃(Prunus persica,XP_007225628.1)和梅(Prunus mume,XP_008220893.1)聚在一起。实时荧光定量PCR表明,MdIDD7在‘长富2号’不同组织(茎、叶、花、果和芽)中均有表达,其中芽的表达量最高。花后40~60 d,MdIDD7在易成花品种‘烟富6号’芽中表达量显著高于难成花品种‘长富2号’。"小年"树顶芽组织中MdIDD7的表达量显著高于"大年"树。在花芽诱导前期,外源GA处理诱导MdIDD7下调表达,而蔗糖处理诱导其上调表达,说明MdIDD7响应激素和糖信号,促进苹果成花。  相似文献   

11.
白菜叶形发育相关基因BrLOM2的克隆与表达分析   总被引:1,自引:0,他引:1  
为了揭示白菜(Brassica rapa ssp.chinensis)BrLOM2基因在叶发育中的调控机制,以白菜圆叶、裂叶近等基因系为材料,同源克隆得到BrLOM2基因,分析其时空表达特性及对激素的响应。结果显示,BrLOM2的ORF全长为549 bp,编码182个氨基酸,含有GRAS家族保守结构域,定位于细胞核,两种材料中的氨基酸序列在保守结构域存在两处突变。进化分析表明,BrLOM2属于十字花科LOM2分支,与大白菜(XP_009138823.1)亲缘关系最近。RT-PCR结果显示,BrLOM2在圆叶白菜中的表达量高于同期裂叶白菜,两种材料茎尖、第1片叶中表达量最高;裂叶中的表达量与叶缘裂刻数呈现同步增加的趋势,6-BA和GA_3分别抑制和促进叶片中的表达,说明BrLOM2低表达可能是裂叶表型产生的主要原因。  相似文献   

12.
对苹果Md CYP707A家族4个成员的蛋白序列进行比对,并进行保守结构域分析发现,MdCYP707A家族成员都含有细胞色素P450单加氧酶结构域。利用荧光定量PCR检测其在苹果不同组织(根、茎、叶、花、果实、种子)中的表达,4个基因在种子中的表达量最高,并且在果实发育不同时期的表达量有明显差异。在苹果种子吸水膨胀和层积过程中的表达分析表明,MdCYP707A家族成员参与了种子萌发过程中ABA的降解。通过检测MdCYP707A基因对不同非生物胁迫(干旱、盐、渗透胁迫)和对ABA的响应,初步认为其在种子萌发中有重要作用,其中,MdCYP707A1对ABA的响应最为明显。另外,利用农杆菌介导的遗传转化的手段,鉴定了MdCYP707A1基因在苹果愈伤组织和拟南芥中的功能,过表达MdCYP707A1能够降低对非生物胁迫的抗性,说明其可能参与ABA的降解过程,同时在拟南芥中异源表达MdCYP707A1能够提高拟南芥种子的萌发率。  相似文献   

13.
在低氮胁迫下,以黄瓜品种津研4 号叶片为供试材料,以cDNA 为模板,依据黄瓜基因组数
据库中Csa002986 基因编码区全序列,应用Primer Premier 5.0 软件设计引物,克隆得到黄瓜钙依赖蛋白
激酶基因(calcium-dependent protein kinase,CDPK)。该基因全长1 584 bp,编码527 个氨基酸。预测
该基因编码的蛋白是一个稳定的亲水蛋白,无跨膜结构,无信号肽,存在蛋白激酶结合区、EF 手型钙结
合区、丝氨酸/苏氨酸蛋白激酶活性位点、N 酰基化位点等多个位点。CDPK 基因在不同氮浓度处理下黄瓜
各部位表达分析结果显示,在无氮条件下,CDPK 基因在茎尖表达量最高,其次为叶和茎;在低氮条件下,
CDPK 基因在茎中表达量最高,其次为茎尖和叶;在正常及高氮条件下,CDPK 基因在茎尖表达量最高,
其次为茎和叶。CDPK 基因在叶中的表达模式分析结果显示,在无氮及低氮胁迫下CDPK 基因表达量增加,
随着氮浓度的降低,CDPK 基因的表达量增加并明显高于对照;在高氮胁迫条件下,CDPK 基因的表达量
低于对照。  相似文献   

14.
苹果NBS-LRR1 基因的鉴定与表达分析   总被引:1,自引:0,他引:1  
宋霄  柏素花  戴洪义 《园艺学报》2013,40(7):1233-1243
 NBS-LRR 蛋白是植物细胞内普遍存在的主要抗性蛋白家族,该家族的蛋白包含有NBS 结构域和LRR 结构基序,在植物抵御各种病原物的侵袭中发挥重要作用。从‘嘎啦’苹果中鉴定了一个NBS-LRR 类基因,命名为MdNBS-LRR1,(GenBank 登录号:JX126858)。该基因全长为3 116 bp,包含一个2 826 bp 的开放读码框,编码包含941 个氨基酸残基的蛋白质;其氨基酸序列含有典型的NBS-LRR类抗病基因所具有的NB-ARC 结构域。Blast 分析发现MdNBS-LRR1 与大豆NBS-LRR 类抗性蛋白具有较高的氨基酸序列一致性(60%)。RT-PCR 分析结果表明,MdNBS-LRR1 在‘嘎啦’苹果的幼叶、茎、功能叶、芽、皮和花等组织中均有表达,在幼叶中的表达量最高,茎中最低。苹果轮纹病病原菌侵染可促进MdNBS-LRR1 基因表达上调,接种后24 d 表达量最高,是对照的10.6 倍左右,另外,在‘嘎啦’苹果幼苗叶片中,SA、MeJA 和ACC 均可诱导该基因的表达,表明MdNBS-LRR1 基因的表达受到与抗病相关信号转导途径的调控。  相似文献   

15.
龙眼水通道蛋白基因(DLPIP1)的克隆与表达分析   总被引:1,自引:0,他引:1  
应用蛋白质组学研究低温胁迫下龙眼叶片蛋白质组变化时,发现PIP1蛋白在龙眼低温胁迫中上调表达。应用RACE技术克隆龙眼水通道蛋白基因全长cDNA,命名为DLPIP1,基因登陆号为JN572691,长度为1 132 bp,包括1个900 bp的开放阅读框,编码299个氨基酸序列,同源性分析表明,DLPIP1在21个不同植物中的一致性为90%~93%。应用生物信息学软件对DLPIP1氨基酸序列分析表明,含有7个跨膜区,有2个NPA单元,其氨基酸残基与MIP家族蛋白保守区序列完全一致。氨基酸序列比对发现,该序列与其他物种PIP质膜水通道蛋白氨基酸序列有很高的同源性。利用实时荧光定量技术对DLPIP1在低温胁迫下不同组织表达谱分析表明,DLPIP1在龙眼根、茎、叶中都有表达,在根中的表达量最高,其次是茎和叶。DLPIP1在低温胁迫时,随着低温胁迫时间的延长而发生变化。这说明DLPIP1蛋白在龙眼低温逆境过程中起作用。  相似文献   

16.
以‘南通小方柿’果实为材料,采用同源克隆的方法,获得了柿乙醇脱氢酶基因DkADH1,其全长为1 377 bp,开放阅读框为1 137个核苷酸,编码379个氨基酸,具有ADH基因典型的结构域和功能域,与番茄、苹果等双子叶植物亲缘性较近。以‘南通小方柿’不同组织为材料,采用qRT-PCR方法对DkADH1及单宁生物合成途径中的相关基因的表达进行分析,同时测定了不同时期果实的单宁含量,结果表明在果实发育过程中,可溶性单宁含量逐渐降低,而不溶性单宁含量不断升高;DkADH1基因在茎、叶、花、果实等器官中均有表达,在果皮中表达量最高。随着果实的成熟,DkADH1表达量总体呈上升趋势。柿果实中单宁合成途径中的相关基因DkF3′5′H和DkMYB4随着乙醇处理果实时间的延长表达量呈下降趋势,推测‘南通小方柿’DkADH1能够抑制单宁合成相关基因的表达,从而降低果实可溶性单宁含量。  相似文献   

17.
苹果apetala2同源基因的克隆和转化研究   总被引:2,自引:0,他引:2  
 利用同源克隆的方法从苹果的花芽中分离出apetala2的同源基因MAP2。MAP2全长2 212 bp,编码549个氨基酸。分析表明, MAP2具有AP2家族典型的结构域, 是苹果的AP2同源基因。Southern杂交结果表明, MAP2在基因组中以低拷贝形式存在。采用RT-PCR的方法分析MAP2在不同组织中的表达,结果显示, MAP2在苹果营养组织、花芽以及不同花器官中均有表达, 与拟南芥的AP2、矮牵牛的PhAP2A的表达模式一致。为确定MAP2在苹果中的生物学功能, 构建了35S∶MAP2正义表达载体, 并对‘皇家嘎啦’苹果进行了农杆菌介导的遗传转化。  相似文献   

18.
【目的】分离和克隆类甜蛋白基因Pb PR5,了解其在‘黄冠’梨不同组织、不同发育阶段以及受到非生物胁迫和植物生长调节剂处理时的表达情况。【方法】以‘黄冠’梨(Pyrus bretschneideri‘Huangguan’)组培苗为试验材料,从水杨酸(salicylic acid,SA)处理的c DNA文库中克隆获得该基因全编码区序列,命名为Pb PR5,对其进行生物信息学分析,并研究该基因在盐、聚乙二醇(EG6000)、SA和乙烯(ETH)处理后的表达情况;以12 a生‘黄冠’梨的叶片和果实为材料,探究该基因在叶片和果实不同发育阶段的表达模式。【结果】Pb PR5的c DNA序列长度为741 bp,编码224个氨基酸残基;该基因的基因组DNA序列长度为813 bp,包含1个内含子。生物信息学分析表明,Pb PR5蛋白与其他植物PR5基因编码的氨基酸序列相似性较高。实时荧光定量PCR分析表明:Pb PR5基因在‘黄冠’梨组培苗的根,茎,叶中均能表达,其中根部的表达量高于茎和叶;盐和干旱胁迫诱导了该基因表达,根和茎中的表达高峰均出现在处理后6 h,叶在盐胁迫后24 h和干旱后12 h出现表达高峰;SA和乙烯也诱导了该基因在叶片中的表达。在不同发育阶段的叶片中,老叶表达量最高,成熟叶次之,幼叶中不表达;在不同发育阶段的果实中,成熟果实中表达量最高,幼果期和膨大期果实表达量较低。【结论】Pb PR5基因在‘黄冠’梨各组织中非组成型表达,并且在‘黄冠’梨抵御生物和非生物胁迫过程中可能具有重要的生物学功能。  相似文献   

19.
【目的】克隆甜樱桃PavMYC2基因并研究其表达模式,为深入研究其在花芽响应温度逆境中的功能奠定基础。【方法】从甜樱桃基因组数据库中获得PavMYC2基因的序列,对该基因进行生物信息学分析和亚细胞定位;通过qRT-PCR技术探究PavMYC2基因在甜樱桃不同组织及花芽各个时期的表达模式;运用双分子荧光互补实验(BiFC)检测其与PavJAZ蛋白的互作关系;结合前人转录组结果分析PavJAZ的季节表达模式。【结果】PavMYC2编码689个氨基酸,具有bHLH-Zip保守结构域,属于bHLH家族。亚细胞定位结果表明,该基因在细胞核中发挥功能。进化树结果表明,甜樱桃PavMYC2与中国樱桃(Prunus pseudocerasus)和樱花(Prunus yedoensis)亲缘关系最近。实时荧光定量PCR结果分析发现,PavMYC2的表达具有组织特异性,在花芽中表达量最高,依次是叶、茎、花、根中表达量的4.8、4.9、8.8、37.4倍。在花芽中,PavMYC2的表达量在夏秋季高,然后逐渐降低,在冬季维持一定的表达水平,春季时最低。顺式作用元件分析发现,该基因启动子上含有大量光响应元件、多种激素响应元件和低温胁迫等相关元件。互作蛋白结果显示,PavMYC2可以与PavJAZ1/2/3蛋白发生互作,进一步对JAZs基因的表达模式进行分析,发现PavJAZ1/2/3/5与PavMYC2的表达量变化相似。【结论】克隆得到1个PavMYC2基因,夏秋季高温时期在花芽中高表达,随后逐渐降低,在冬季维持一定的表达水平,春季开花时最低。其与PavJAZ1/2/3互作,协同响应温度胁迫。该研究为进一步探究甜樱桃花芽中MYC2在响应温度胁迫和调控开花进程中的作用奠定了基础。  相似文献   

20.
【目的】克隆甜樱桃中可能参与成花途径的MADS基因,分析其基本信息,研究其在不同组织中的表达情况。【方法】以甜樱桃‘萨米特’(‘Summit’)为试材,结合桃基因组分析,克隆得到14个可能参与成花的MADS基因,分别命名为PaSOC1、PaAG、PaAP1、PaAP1-2、PaAP3、PaPI、PaSVP、PaAGL24、PaSEP1、PaSEP2、PaSEP3、PaSEP4、PaSEP5、PaFLC,通过DNAMAN、SMART、protein BLAST和MEGA5等软件分析14个甜樱桃的MADS基因结构、氨基酸结构域及其进化关系,RT-PCR检测其在樱桃根、叶芽、叶、花芽、花、韧皮部中的表达模式。【结果】14个甜樱桃MADS成员大小为612~765 bp,均含有典型的MADS结构域和K-box结构域,含有6~8个内含子。分属7个亚组,PaSEP1、PaSEP2、PaSEP3、PaSEP4、PaSEP5属于SEP亚组,PaAP1、PaAP1-2属于AP1亚组,PaAG属于AG亚组,PaSOC1属于SOC1亚组,PaAP3和PaPI属于AP3/PI亚组,PaSVP属于SVP亚组,PaAGL24属于AGL24亚组,PaFLC并未聚到FLC亚组中。RT-PCR分析显示,14个MADS基因在花芽或花中均有不同程度的表达,此外,除PaAP3、PaSEP1、PaSEP4及PaSEP5之外,其他几个基因在韧皮部中也有不同程度的表达。【结论】获得的甜樱桃MADS-box基因结构高度保守,参与调控成花及花发育过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号