首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant growth–promoting rhizobacteria (PGPR) have been reported to stimulate the growth and yield of grain crops, particularly when nutrient supply is poor. However, the mechanisms underlying stimulation of plant growth may vary depending not only on growth conditions and crop management but also on plant and bacterial species. The present study assessed the effect of an inoculation with single or multiple PGPR strains on phosphorus (P)‐solubilization processes in the soil and on grain yield in wheat. Single inoculation with Bacillus subtilis OSU‐142, Bacillus megaterium M3, or Azospirillum brasilense Sp245 increased grain yield by 24%, 19%, and 19%, respectively, while a mixed inoculation with OSU‐142, M3, and Sp245 increased grain yield by 33% relative to noninoculated plants. Single inoculations with Paenibacillus polymyxa RC05 or Bacillus megaterium RC07 were less effective. Single or mixed treatments with OSU‐142, M3, and Sp245 increased the concentrations of the labile and moderately labile P fractions in rhizosphere soil. The growth‐stimulating effect of OSU‐142, M3, and Sp245 was also reflected by higher P concentrations in most plant organs. Among all inocula tested, the highest plant P acquisition was obtained in the presence of M3 and accompanied by the highest microbial P levels and the highest phosphatase activities in the rhizosphere soil. In conclusion, seed inoculation with mixed PGPR strains may effectively substitute for a part of P‐fertilizer application in extensive wheat production, and in particular M3 appears to improve the solubilization of inorganic soil P.  相似文献   

2.
Effects of plant growth promoting rhizobacteria (PGPR) [(Pseudomonas BA-8 (biological control agent), Bacillus OSU-142 (N2-fixing), and Bacillus M-3 (N2-fixing and phosphate solubilizing)] on yield and some fruit properties of strawberry cultivar ‘Selva’ in the province of Erzurum, Turkey in 2002–2003. Foliar + root application of PGPR strains significantly increased yield per plant as compared with the control. Root application of PGPR strains significantly increased total soluble solids, total sugar and reduced sugar, but decreased titratable acidity. It was also determined that bacteria applications have no important effect on the average fruit weight and pH. The results of this study suggested that Pseudomonas BA-8, Bacillus OSU-142 and Bacillus M-3 have potential for increasing yield in strawberry plant.  相似文献   

3.
In this study we aimed to investigate the effects of plant-growth-promoting rhizobacteria (PGPR) on seed incubation of spring wheat and barley. Three bacterial strains were applied singly and in combinations. Seed inoculation with strains significantly affected grain yield (GY), straw (SWY), total yield (TY), and plant nutrient element (PNE) content. In field trials, compared to the control, single inoculations gave GY, SWY, and TY increases by 27.5–31.9%, 1.1–5.3%, and 1.3–11.3% in wheat and 15.1–27.8%, 10.8–15.5%, and 14.5–18.5% in barley, respectively, but mixtures of strains gave increases in GY, SWY, and TY by 54.7%, 2.1%, and 6.7% in wheat and 57.8%, 14.6%, and 17.5% in barley, respectively. According to the results, it was concluded that seed inoculations with PGPR and mixture inoculation might satisfy nitrogen requirements, but Bacillus megaterium M3 and MIX (Bacillus subtilis OSU142, B. megaterium M3, Azospirillum brasilense Sp245) inoculation provided greater PNE concentrations than mineral fertilizer application for wheat and barley under field conditions.  相似文献   

4.
Abstract

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three harvest periods. The application treatments included the control (without bacteria inoculation and mineral fertilizers), mineral fertilizers (N, NP and P) and plant growth promoting rhizobacteria species (Bacillus licheniformis RC04, Paenibacillus polymyxa RC05, Pseudomonas putida RC06, and Bacillus OSU-142) in sterilized soil. The PGPR, fungi, seedling growth, soil pH, organic matter content, available P and mineral nitrogen were determined in soil compacted artificially to three bulk density levels (1.1, 1.25 and 1.40 Mg m?3) at 15, 30, and 45 days of plant harvest. The results showed that all the inoculated bacteria contributed to the amount of mineral nitrogen. Seed inoculation significantly increased the count of bacteria and fungi. Data suggest that seed inoculation of barley with PGPR strains tested increased root weight by 9–12.2%, and shoot weight by 29.7–43.3% compared with control. The N, NP and P application, however, increased root weight up to 18.2, 25.0 and 7.4% and shoot weight by 31.6, 43.4 and 26.4%, respectively. Our data show that PGPR stimulate barley growth and could be used as an alternative to chemical fertilizer. Soil compaction hampers the beneficial plant growth promoting properties of PGPR and should be avoided.  相似文献   

5.
In 2009 a greenhouse experiment was conducted to determine the effects of boron (B) and plant growth-promoting rhizobacteria (PGPR) on wheat (Triticum aestivum spp. vulgare cv ‘Bezostiya’) and barley (Hordeum vulgare cv ‘Tokak’) on plant growth, freezing injury, and antioxidant enzyme capacity. Results showed that boron (0, 1, 3, 6, 9 kg B ha?1) and PGPR application (Bacillus megaterium M3, Bacillus subtilis OSU142, Azospirillum brasilense Sp245 and Raoultella terrigena) at which 50% of leaves were injured (LT50) values and ice nucleation activities in both plants were found statistically significant. Boron application with all PGPR strains decreased LT50 values in wheat and barley plants under noncold stress (NCS) and cold stress conditions (CS). There were statistically significant differences between bacterial inoculation and B fertilizer in terms of root and shoot dry weight under NCS and CS conditions. Reactive oxidative oxygen species (ROS) and antioxidant enzyme activities (SOD, POD, CAT) were negatively affected CS conditions and decreased with reduced temperatures of media, but B and PGPR applications alleviated the low-temperature deleterious effects in both plants species tested. The lowest ROS and antioxidant enzyme (SOD, POD, CAT) of wheat and barley were observed with 6 kg B ha?1 with R. terrigena.  相似文献   

6.
The yield response of a wheat (Kirik) and a barley (Tokak 157/37) cultivar to inoculation with Azospirillum brasilense Sp246 and Bacillus sp. OSU‐142 was studied in relation to three levels of N fertilization (0, 40, and 80 kg ha–1) under field conditions in Erzurum, Turkey, in 1999 and 2000. Seed inoculation with A. brasilense Sp246 significantly affected yield and yield components, both in wheat and barley. On average of years and N doses, inoculation with A. brasilense Sp246 increased spike number per m2, grain number per spike, grain yield, and crude protein content by 7.2, 5.9, 14.7, and 4.1 % in wheat and by 6.6, 8.1, 17.5, and 5.1 % in barley, respectively, as compared to control. Inoculation with Bacillus sp. OSU‐142 significantly increased kernel number per spike in wheat, but no significant effect was determined in the other characteristics. Grain yields and yield components were also higher at all levels of nitrogen fertilizer in the inoculated plots as compared to the control. However, these increases diminished at high fertilizer levels. These results suggest that application of the growth promoting bacteria A. brasilense Sp246 may have the potential to be used as a biofertilizer for spring wheat and barley cultivation in organic and low‐N input agriculture.  相似文献   

7.
This study was conducted with sugar beet in greenhouse and field at two soil type with different organic matter (containing 2.4 and 15.9% OM, referred as the low- and high-OM soil) conditions in order to investigate seed inoculation of sugar beet, with five N2-fixing and two phosphate solubilizing bacteria in comparison to control and mineral fertilizers (N and P) application. Three bacterial strains dissolved P; all bacterial strains fixed N2 and significantly increased growth of sugar beet. In the greenhouse, inoculations with PGPR increased sugar beet root weight by 2.8-46.7% depending on the species. Leaf, root and sugar yield were increased by the bacterial inoculation by 15.5-20.8, 12.3-16.1, and 9.8-14.7%, respectively, in the experiment of low- and high-OM soil. Plant growth responses were variable and dependent on the inoculants strain, soil organic matter content, growing stage, harvest date and growth parameter evaluated. The effect of PGPR was greater at early growth stages than at the later. Effective Bacillus species, such as OSU-142, RC07 and M-13, Paenibacillus polymyxa RC05, Pseudomonas putida RC06 and Rhodobacter capsulatus RC04 may be used in organic and sustainable agriculture.  相似文献   

8.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

9.
In 2009 a greenhouse experiment was conducted to determine the effects of boron (B) and plant growth-promoting rhizobacteria (PGPR) treatments, applied either alone or in combination, on yield, plant growth, leaf total chlorophyll content, stomatal conductance, membrane leakage, and leaf relative water content of wheat (Triticum aestivum L. cv. Bezostiya) and barley (Hordeum vulgare L. cv. Tokak) plants. Results showed that alone or combined B (0, 1, 3, 6, 9 kg ha?1) and PGPR (Bacillus megaterium M3, Bacillus subtilis OSU142, Azospirillum brasilense Sp245, and Raoultella terrigena) treatments positively affected dry weight and physiological parameters searched in both species. Statistically significant differences were observed between bacterial inoculation and B fertilizer on root and shoot dry weight under non-cold-stress (NCS) and cold-stress (CS) conditions. Leaf total chlorophyll content (LTCC), stomatal conductance (SC), leaf relative water content (LRWC), and membrane leakage (ML) were negatively affected by CS conditions and decreased with reduced temperatures of media, but B and PGPR application alleviate the low-temperature deleterious effect in both species. The greatest SC and LRWC, and the lowest ML, were obtained by 6 kg B ha?1 combined with R. terrigena treatment. The greatest LTCC in both NCS and CS conditions was observed with B. megaterium M3 application alone.  相似文献   

10.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   

11.
Introducing specific microorganisms into the soil ecological system is an important strategy for improving nutrient use efficiency. Two pot experiments were conducted in the greenhouse from December 3, 2012 to January 25, 2013 (Experiment 1) and March 11 to April 23, 2013 (Experiment 2) to evaluate the effect of nitrogen (N) source and inoculation with plant growth-promoting rhizobacteria (PGPR) on plant growth and N and phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) grown on calcareous soils from South Florida, USA. Treatments included urea, controlled release urea (a controlled release fertilizer, CRF) each at low and high N rates and with or without inoculation of PGPR. A mixture of PGPR strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4 was applied to the soil during growing periods of tomato. Treatments with PGPR inoculation increased plant height compared to treatments without PGPR in both experiments. Inoculation with PGPR increased shoot dry weight and shoot N uptake for the same N rate and N source. In both experiments, only at high N rate, CRF and urea treatments with PGPR had significantly (P < 0.05) greater shoot biomass than those without PGPR. Only at high N rate, CRF treatment with PGPR significantly increased shoot N uptake by 39.0% and 10.3% compared to that without PGPR in Experiments 1 and 2, respectively. Meanwhile, presence of PGPR in the soil increased shoot P uptake for all treatments in Experiment 1 and for most treatments in Experiment 2. In Experiment 1, only at low N rate, CRF treatment with PGPR significantly increased shoot P uptake compared with that without PGPR. In Experiment 2, a significant increase in shoot P uptake by inoculation of PGPR was only observed in CRF treatment at high N rate. Results from this study indicate that inoculation with PGPR may increase plant growth and N and P uptake by tomato grown on calcareous soils. However, the effect of PGPR varied and was influenced by many factors such as N source, N rate, and soil fertility. Further investigations are warranted to confirm the effect of PGPR under different soil conditions.  相似文献   

12.
Two plant growth promoting rhizobacteria (PGPR), Pseudomonas moraviensis and Bacillus cereus, were used as bioinoculants on wheat, applied alone and in combination. Ground maize straw and sugarcane husk were used as carriers. Experiment was conducted for two consecutive years (2010 and 2011) under axenic conditions in the greenhouse of Quaid-e-Azam University, Islamabad. Sodium chloride (NaCl) (150 mM) was applied with irrigated water after 7 and 14 days of seed germination. Measurements made 40 days after sowing (DAS) revealed that P. moraviensis and B. cereus have better survival efficiency (as evidenced by higher colony forming units (CFUs)) in the carriers. The substantial increase in CFU of both PGPR was also observed in the soil at 57 DAS. Coinoculation of PGPR with both the carrier materials significantly decreased electrical conductivity (EC) and Na+ content of soil over control. The N, P, K+, Ca+, and Mg+ contents were 30–40% higher in soil, and 30–45% higher in leaves. Coinoculation of PGPR with carriers significantly increased chlorophyll, protein, sugar, phytohormone contents, and antioxidant activities of leaves. The application of biofertilizers improved the yield of wheat by 15–25% over control. It is inferred that the carriers assisted PGPR for long-time survival, and the formulation was applicable in promoting crop production under salt stress.  相似文献   

13.
The capacity of plant growth-promoting rhizobacteria (PGPR) – Bacillus amyloliquefaciens GB03 (BamGB03), B. megaterium SNji (BmeSNji), and Azospirillum brasilense 65B (Abr65B) – to enhance growth and nutrient uptake in wheat was evaluated under different mineral N fertilizer rates, in sterile and non-sterile soils, and at different developmental stages. In gnotobiotic conditions, the three strains significantly increased plant biomass irrespective of the N rates. Under greenhouse conditions using non-sterile soil, growth promotion was generally highest at a moderate N rate, followed by a full N dose, while no significant effect was observed for the inoculants in the absence of N fertilizer. At 50N, plant biomass was most significantly increased in roots (up to +45% with Abr65B) at stem-elongation stage and in the ears (+19–23% according to the strains) at flowering stages. For some nutrients (N, P, Mn, and Cu), the biomass increases in roots and ears were paralleled with reduced nutrient concentrations in the same organs. Nevertheless, growth stimulation resulted in a higher total nutrient uptake and higher nutrient uptake efficiency. Furthermore, Abr65B and BmeSNji counteracted the reduction of root development caused by a high N supply. Therefore, combining PGPR with a proper cultivated system, N rate, and plant stage could enhance their biostimulant effects.  相似文献   

14.
This study was conducted to examine the effect of inoculation of plant growth-promotion Rhizobacteria (PGPR) on phenological data, total yield and fruit quality characteristics of strawberry (Fragaria x ananassa Duch) cv. ‘Fern’ during 2006 and 2007. All bacterial root inoculations significantly increased yield per plant (1.98–20.85%), average fruit weight (3.05–19.26%) and first quality fruit ratio (10.30–32.05%) compared to control, whereas the bacterial inoculations did not affect leaf area, first flowering and harvest dates in strawberry cv. ‘Fern’. The bacteria also increased soluble solid content (SSC) and vitamin C in strawberry cv. ‘Fern’. The vitamin C contents of fruits ranged from 47.41 mg 100 g?1 (control) to 53.88 mg 100 g?1 (RC05), while SSC values varied between 10.16% (control) and 12.83% (RC01). Results of this study show that RC19 (Bacillus simplex), RC05 (Paenibacillus polymyxa), and RC23 (Bacillus spp.) have the potential to increase the yield and growth of strawberries.  相似文献   

15.
A pot experiment was undertaken under net house conditions, with three rhizobacterial strains AW1 (Bacillus sp.), AW5 (Providencia sp.) and AW7 (Brevundimonas sp.), applied along with 2/3 recommended dose of nitrogen (N) and full dose of phosphorus (P) and potassium (K) fertilizers (N90P60K60). An enhancement of 14–34% in plant biometric parameters and 28–60% in micronutrient content was recorded in treatments receiving the combination of AW1?+?AW5 strains, as compared to full dose of fertilizer application. The treatment involving inoculation with AW5?+?AW7 recorded highest values of % P and N, with a two-fold enhancement in phosphorus and 66.7% increase in N content, over full dose application of P and K fertilizers. A significant correlation was recorded between plant biomass, panicle weight, grain weight, N, P and iron (Fe) with acetylene reduction activity, indicating the significance of N fixation in overall crop productivity. Our study illustrates the multiple benefits of plant growth promoting rhizobacteria (PGPR) inoculation in integrated nutrient management and biofortification strategies for wheat crop.  相似文献   

16.
Little scientific information on efficiency of different commercial biofertilizers restricts setup of further reproducible pot or field experiments and hence, provides lack of evidence of biofertilizer application in plant growth promotion and disease suppression. In the present experiment, efficiency of four commercial Trichoderma and one Bacillus biofertilizer was screened by a bio-indicator plant, cucumber (Cucumis sativus L.) under controlled laboratory conditions. Inoculation of cucumber seeds with different commercial biofertilizers significantly increased the germination rates (ca. 20–25%) and stimulated other growth parameters. In seedling establishment test, biofertilizers inoculated cucumber seedlings showed significant higher root dry weight (ca. 32 to 96%), leaf area (ca. 60 to 140%), root length (ca. 30%) and shoot dry weight (ca. 88%) in two weeks culture period compare to that of the control. Additionally, in-vitro antagonistic activity against take-all pathogen (Gaeumannomyces graminis var. tritici, Ggt) in wheat and phosphate solubilizing activity was demonstrated for Trichoderma biofertilizer. However, in-vitro solubilization of Mn was not detected. The results suggested that the potential activity of different commercial biofertilizers could be easily screened within several days with the described rapid bio-test by increasing seed germination, and improving growth and growth related parameters of cucumber grown in nutrient solution under controlled culture system.  相似文献   

17.
Improvement in sustainable production of switchgrass (SG, Panicum virgatum L), as a purpose-grown biomass feedstock crop, could be realized through investigation of plant–microbe interactions associated with plant growth promoting rhizobacteria (PGPR), capable of biological nitrogen fixation (BNF). The objective of this study is to increase establishment year production of SG biofuels by inoculation with a mixed PGPR inoculum. We isolated pure strains of N2-fixing, and other PGPR, from SG rhizomes. The bacteria were identified as Paenibacillus polymyxa, an N2-fixing bacterium, and other PGPR capable of solubilizing phosphate and/or producing auxins. Field trials utilizing these strains in a mixed PGPR inoculum showed that inoculated plants contained more N in tillers during anthesis but not at senescence, suggesting that more N could be cycled to belowground roots and rhizomes for winter storage. The amount of N removal in biomass and recovery of fertilizer N were also greater for inoculated than uninoculated plants. PGPR inoculation also resulted in positive N balances, suggesting improved access to N from non-fertilizer N sources, possibly through BNF and improved soil N uptake. Overall, inoculation of SG with PGPR enhanced N acquisition and could be an effective strategy to increase the establishment year production of this crop.  相似文献   

18.
A hydroponics study was carried out to evaluate the effect of three plant growth promoting rhizobacteria (PGPR) namely, Bacillus mucilaginosus, Azotobacter chroococcum, and Rhizobium spp. on their ability to mobilize potassium from waste mica using maize and wheat as the test crops under a phytotron growth chamber. Results revealed that PGPR significantly improved the assimilation of potassium by both maize and wheat, where waste mica was the sole source of potassium. This was translated into higher biomass accumulation, potassium content and uptake by plants as well as chlorophyll and crude protein content in plant tissue. Among the rhizobacteria, Bacillus mucilaginosus resulted in significantly higher mobilization of potassium than Azotobacter chroococcum and Rhizobium inoculation. Overall, inoculation of maize and wheat plants with these bacteria could be used to mobilize potassium from waste mica, which in turn could be used as a source of potassium for plant growth.  相似文献   

19.
Enhancement of plant growth by Bacillus is well documented and several mechanisms have been suggested for the phytostimulatory activity of this group of plant growth-promoting rhizobacteria (PGPR). In the present work, the PGP potential of plant associated Bacillus spp. and their growth-promoting effect on wheat were studied. Six out of 35 strains were chosen based on seed germination assay, plant growth-promoting abilities, enzymatic function, and auxin production. All tested strains were subjected to pot experiments and their phenotypic and molecular assays were also done. Two Bacillus strains including WhIr-15 and WhIr-12 produce maximum amount of auxin (16.2 and 14 µg ml?1, respectively). Strain WhIr-15 had just the ability to produce indo-3-acetic acid (IAA), lipase, and protease enzymes. Strain WhIr-12 was also recorded positive for siderophore, auxin production, and phosphorus (P) solubilization. Bacterial IAA production positively correlated with root length (r = 0.875; p ≤ 0.05). Significant enhancement in root weight (71% and 53%) and in panicle weight (91% and 77%) was recorded in WhIr-15 and WhIr-12, respectively, over untreated controls. Based on phenotypic and 16S rDNA sequencing, these two strains belong to Bacillus sp. Based on our results, phytohormone-producing Bacillus sp. can be applied at field level to improve wheat productivity.  相似文献   

20.
Bacillus velezensis strains, belonging to plant growth‐promoting rhizobacteria (PGPR), are increasingly used as microbial biostimulant. However, their field application to winter wheat under temperate climate remains poorly documented. Therefore, three B. velezensis strains IT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological interaction systems were firstly developed under gnotobiotic and greenhouse conditions combined with sterile or non‐sterile soil, respectively, and finally assayed in the field during two years coupled with different N fertilization rates. Under gnotobiotic conditions, all three strains significantly increased root growth of 14 d‐old spring and winter wheat seedlings. In the greenhouse using non‐sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%). The three strains were able to improve nutrient uptake of the spring wheat grown in the greenhouse, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases in nutrient uptake were dependent on the organs and the elements. The root biomass increases in inoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under field conditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by 983 kg ha?1, or 14.9%, in relation to non‐inoculated controls. The three strains in the 2015 field trial failed to confirm the previous positive results, likely due to the low temperatures occurring during and after inoculations. The Zeleny sedimentation value, indicative of flour quality, was unaffected by the inoculants. The results are discussed in the perspective of bacterial application to wheat under temperate agricultural practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号