首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth.However,little is known about the molecular genetic basis for root growth under excess Hg2+ stress.To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance,a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCl2 solution.Relative root length (RRL),percentage of the seminal root length in +HgCl2 to-HgCl2,was used for assessing Hg2+ tolerance.In a dose-response experiment,Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 μmol/L.Three putative QTLs for RRL were detected on chromosomes 1,2 and 5,and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance.The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.  相似文献   

2.
水稻耐盐性数量性状位点的初步检测   总被引:37,自引:3,他引:37  
用RFLP分析技术和分蘖株系法对由耐盐性品种Pokkali和盐敏感品种Peta配制的BC1(Peta/Pokkali∥Peta)群体分别检测水稻苗期和成熟期耐盐性数量性状位点(QTLs)。表型鉴定在含(处理)或不含(对照)60 mol/m3 NaCl的营养液中进行,苗期观测盐害级别、苗Na+含量和鲜重/干重比值3项指标,成熟期测定10种农艺性状处理与对照的相对值。从水稻12条染色体上筛选出43个多态性标记,对上述指标分别作点分析,共检出15个连锁标记。连锁标记的分布特点显示,在研究所涉及的基因组范围内存在4个影响苗期耐盐性的QTL,其增效等位基因均来自耐盐品种Pokkali;影响成熟期耐盐性的QTL分布于7条染色体的1或2个连锁区间上,其有利基因来自双亲;RG678和RZ400B~RZ792附近的2个QTL在全生育期都能表达较强耐盐性。  相似文献   

3.
A recombinant inbred line population derived from a super hybrid rice Xieyou 9308(Xieqingzao B/Zhonghui 9308) and its genetic linkage map were used to detect quantitative trait loci(QTLs) for rice yield traits under the low and normal nitrogen(N) levels. A total of 52 QTLs for yield traits distributed in 27 regions on 9 chromosomes were detected, with each QTL explaining 4.93%–26.73% of the phenotypic variation. Eleven QTLs were simultaneously detected under the two levels, and 30 different QTLs were detected under the two N levels, thereby suggesting that the genetic bases controlling rice growth under the low and normal N levels were different. QTLs for number of panicles per plant, number of spikelets per panicle, number of filled grains per panicle, and grain density per panicle under the two N levels were detected in the RM135–RM168 interval on chromosome 3. QTLs for number of spikelets per panicle and number of filled grains per panicle under the two N levels, as well as number of panicles per plant and grain density per panicle, under the low N level, were detected in the RM5556–RM310 interval on chromosome 8. The above described QTLs shared similar regions with previously reported QTLs for rice N recycling.  相似文献   

4.
Leaf photosynthesis, an important determinant of yield potential in rice, can be estimated from measurements of chlorophyll content. We searched for quantitative trait loci (QTLs) for Soil and Plant Analyzer Development (SPAD) value, an index of leaf chlorophyll content, and assessed their association with leaf photosynthesis. QTL analysis derived from a cross between japonica cultivar Sasanishiki and high-yielding indica cultivar Habataki detected a QTL for SPAD value on chromosome 4. This QTL explained 31% of the total phenotypic variance, and the Habataki allele increased the SPAD value. Chromosomal segment substitution line (CSSL) with the corresponding segment from Habataki had a higher leaf photosynthetic rate and SPAD value than Sasanishiki, suggesting an association between SPAD value and leaf photosynthesis. The CSSL also had a lower specific leaf area (SLA) than Sasanishiki, reflecting its thicker leaves. Substitution mapping under Sasanishiki genetic background demonstrated that QTLs for SPAD value and SLA were co-localized in the 1,798-kb interval. The results suggest that the phenotypes for SPAD value and SLA are controlled by a single locus or two tightly linked loci, and may play an important role in increasing leaf photosynthesis by increasing chlorophyll content or leaf thickness, or both.  相似文献   

5.
Thousand-grain weight(TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933.6-kb region on the long arm of rice chromosome 1. Firstly, three residual heterozygotes(RHs) were selected from a BC_2F_(11) population of the indica rice cross Zhenshan 97(ZS97)///ZS97//ZS97/Milyang 46. The heterozygous segments in these RHs were arranged successively in physical positions, forming one set of sequential residual heterozygotes(SeqRHs). In each of the populations derived, non-recombinant homozygotes were identified to produce near isogenic lines(NILs)comprising the two homozygous genotypes. The NILs were tested for grain weight, grain length and grain width. QTL analyses for the three traits were performed. Then, the updated QTL location was followed for a new run of SeqRHs identification-NIL development-QTL mapping. Altogether, 11 NIL populations derived from four sets of SeqRHs were developed and used. qTGW1.2a was finally delimitated into a77.5-kb region containing 13 annotated genes. In the six populations segregating this QTL, which were in four generations and were tested across four years, the allelic direction of qTGW1.2a remained consistent and the genetic effects were stable. For TGW, the additive effects ranged from 0.23 to 0.38 g and the proportions of phenotypic variance explained ranged from 26.15% to 41.65%. These results provide a good foundation for the cloning and functional analysis of qTGW1.2a.  相似文献   

6.
为了分离鉴定qRL4,以超级稻协优9308衍生重组自交系与轮回亲本中恢9308(R9308)回交多代的高代回交群体为材料,利用琼脂无土栽培技术,开展水稻根长QTL qRL4的分离鉴定研究,最后将qRL4定位在第4染色体分子标记RM5687与InDel49间624.6kb范围内。此基因的定位与分离鉴定将有助于水稻根长相关遗传机理的研究,为探究在基因水平上的水稻根系形态建成奠定了坚实基础。  相似文献   

7.
8.
1000-grain weight(TGW) is one of the three component traits of the grain yield in rice(Oryza sativa L). This study was conducted to validate and fine-map qT GW1.1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines(NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46.The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522,RM11448- RM11549, RM1232- RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM.Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qT GW1.1was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RM11554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.  相似文献   

9.
10.
The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid weight, plant dry weight along with relative water content were measured after exposure to saline solution (with electrical conductivity value of 12 dS/m). Genotypes, showing significant differential responses towards salinity in the fields, were assessed through 14 salinity-linked morpho-biochemical attributes, measured at 14 d after exposure of seedling in saline nutrient solution. Relative water content, chlorophyll a/b, peroxidase activity and plant biomass were identified as potential indicators of salt tolerance. Principal component analysis and successive Hierarchical clustering using Euclidean distance revealed that Talmugur, Gheus, Ghunsi, Langalmura, Sabitapalui, and Sholerpona were promising genotypes for further breeding programmes in rice. The maximum Euclidean distance was plotted between Thavallakanan and Talmugur (7.49), followed by Thavallakanan and Langalmura (6.82), indicating these combinations may be exploited as parental lines in hybridization programmes to develop salinity tolerant variety.  相似文献   

11.
Mapping Quantitative Trait Loci for Palatability of Milled Rice   总被引:1,自引:0,他引:1  
Quantitative trait loci (QTLs) controlling palatability in rice were identified using a set of 98 backcross inbred lines (BILs) population derived from a cross between a japonica variety Nipponbare and an indica variety Kasalath. The palatability scores of the population measured by RQ1/Plus Rice Analyzer, showed a continuous and transgressive segregative distribution with a range from 66 to 92. Four putative QTLs for palatability, qPAL-5, qPAL-7, qPAL-8a and qPAL-8b, were detected on chromosome 5, 7 and 8, and they accounted 7.83, 7.03, 11.58 and 7.19% of the total phenotypic variation, respectively. Three alleles qPAL-5, qPAL-7 and qPAL-8b from Kasalath increased the palatability score, whereas only one Nipponbare allele qPAL-8a increased the score. Eight transgressive lines in palatability were selected to make a comparison between phenotypic and genotypic classes. The result explained the possibility of positive QTLs pyramiding through marker-assisted selection of highly palatable rice.  相似文献   

12.
Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes   总被引:2,自引:0,他引:2  
In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage(35 d after transplanting), plants were exposed to different salinity levels(0, 20, 40 and 60 mmol/L NaCl). Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K~+/Na~+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.  相似文献   

13.
《Journal of Crop Improvement》2013,27(1-2):205-221
Abstract

Soil salinity and alkalinity are a widespread problem in a number of rice (Oryza sativa L.) growing countries, particularly in South Asia. Kalanamak is one of the finest quality traditional scented rices of India. Tolerance of 40 lines of Kalanamak was evaluated at pH 4.5, 7.0 and 8.9, under in vitro conditions, both in the absence and presence of 70 mM NaCl and also in Usar soil in the field at a different pH. Different lines exhibited wide variability in their sensitivity to pH and/or salt, both under in vitro and in vivo conditions. In vitro, adverse effect of salt was more pronounced at high pH (8.9). Most of the lines that showed salt tolerance relative to root and/or shoot growth at high pH under in vitro conditions, e.g., 3119, 3120, 3120-1, 3126, 3128, 3130, 3131, 3216, 3216-1, 3222, 3256, 3278 and 3319 performed well in Usar soil in the field even at pH 9-9.5. Two high quality, panicle blast-resistant and relatively salt-tolerant lines (3119 and 3131) yielded equally well or better than coarse grain cultivar Narendra Usar-2 recommended for the cultivation on Usar soil. In a multilocation field trial, Kalanamak 3119 yielded well on alkaline, coastal saline and inland saline soils. This line holds great potential for cultivation on Usar soil.  相似文献   

14.
粳稻垩白性状的QTL检测   总被引:1,自引:0,他引:1  
 利用大粒粳稻DL115与小粒粳稻XL005杂交获得的F2群体200个单株为作图群体,采用复合区间作图方法,利用SSR标记对稻米垩白性状进行了数量性状基因座(QTL)检测。研究结果表明,稻米垩白粒率、垩白大小和垩白度在F3株系均呈连续分布,表现为由多基因控制的数量性状。检测到与稻米垩白性状相关的QTL 8个,分别位于第3(5个)、第5(2个)和第6(1个)染色体上,包括与垩白粒率有关的QTL 3个,与垩白大小相关的QTL 2个,与垩白度有关的QTL 3个。其中位于第3染色体RM6832-RM411、RM15456-RM6832和RM6266-RM15456区间的qPGWC3、qACE3b和qDEC3b,分别解释垩白粒率、垩白大小和垩白度表型变异的43.89%、18.83%和19.57%,为主效QTL。上述3个主效QTL所在染色体上的位置与前人研究结果均不一致,认为是新的QTL。所检测到的8个QTL中,除qPGWC6的增效等位基因来自无垩白亲本XL005外,其他7个QTL的增效等位基因均来自垩白性状值较大的亲本DL115。垩白粒率和垩白大小基因作用表现为部分显性,垩白度基因作用表现为加性。  相似文献   

15.
水稻抗条纹叶枯病数量性状座位分析   总被引:19,自引:2,他引:17  
为探明水稻品种窄叶青8号抗条纹叶枯病的数量性状座位,构建了窄叶青8号/武育粳3号F2群体的分子图谱,采用人工接种和田间自然接种两种鉴定方法,以病情指数比率为表型值,对每个F2单株衍生的F2∶3家系进行了抗条纹叶枯病鉴定。整个群体的病情指数比率均呈偏向于抗性亲本的连续性分布,表明条纹叶枯病抗性受数量性状基因的控制。进一步的QTL分析发现,两种鉴定方法所检测到的QTL完全不同,人工接种(强迫饲毒)方法仅检测到1个抗性基因位点qSTV7,其增强抗性的等位基因来源于窄叶青8号,而田间自然接种方法检测到2个抗性基因位点qSTV5和qSTV1,其增强抗性的等位基因分别来源于窄叶青8号和武育粳3号,暗示抗性亲本窄叶青8号可能携带耐病毒基因和抗灰飞虱基因,而感病亲本武育粳3号经遗传重组后,其抗性基因也得以表现。比较前人研究结果,发现检测到的QTL为新的抗条纹叶枯病基因位点,这些基因不同于抗条纹叶枯病主基因Stvb i,可为防止单一基因广泛使用造成的遗传脆弱性,提供新的抗性基因资源。  相似文献   

16.
Photosynthetic efficiency, a key trait that determines yield potential in rice, is quantitatively regulated by multiple genes. Utilization of valuable genetic resources hidden in wild rice is an effective way to improve rice photosynthesis and yield potential. In this study, 152 backcross inbred lines derived from wild rice Oryza longistaminata were explored for QTL mapping of photosynthetic rate (Pn) and biomass (BM) in natural fields. Five novel QTLs for Pn and seven QTLs for BM or daily biomass (DBM) derived from O. longistaminata were identified. One of these QTLs, qPn8.1, could significantly improve Pn and was located in a 68-kb region containing only 11 candidate genes. Meanwhile, qBM1.1 and qDBM1.1 for BM and DBM on chromosome 1 were overlapped with qPn1.1 for Pn from 9311, and could affect both Pn and BM in natural fields. These QTLs identified in O. longistaminata may provide a novel alternative to explore new genes and resources for yield potentiality, highlighting the important role of wild rice in rice breeding programs.  相似文献   

17.
18.
与耐大豆疫霉根腐病相关的QTL分析   总被引:3,自引:1,他引:2  
疫霉根腐病是世界范围内的大豆生产上的毁灭性病害。利用470对SSR引物对由耐病品种Conrad×合丰25获得的140个F2:5,重组自交系(RIL)群体的耐大豆疫霉根腐病基因进行QTL分析,为将耐病基因聚合的分子辅助育种提供理论依据。田间耐病性鉴定于2007年在中国黑龙江省佳木斯和加拿大Woodslee两点进行,并分别采用来自两地的混合菌种进行温室鉴定。经过WinQTL 2.0复合区间法计算,共有4个分子标记(Satt428、Satt600、Satt325和Satt233)与大豆疫霉根腐病显著相关。这些分子标记对病害损失率贡献率从5.47%到27.89%不等。Satt428和Satt600定位在MLG D1b+W上,遗传距离相距10.9cM;Satt325和Satt233分别定位在MLGF和MLG A2上。通过大环境试验在我国大豆品种合丰25找到与耐大豆疫霉根腐病显著相关的QTL,并定位在MLG A2上。  相似文献   

19.
利用染色体片段置换系定位水稻芽期耐冷性QTL   总被引:2,自引:0,他引:2  
以籼稻品种9311为受体、粳稻品种日本晴为供体构建的95个染色体片段置换系为材料,在5℃低温条件下进行芽期耐冷性鉴定。结果表明,6个置换系低温处理后的成苗率与受体亲本9311有一定差异,其耐冷性略强于9311。利用代换作图法共鉴定出4个与芽期耐冷性相关的QTL,分别位于水稻第5和第7染色体上。其中qCTB-5-1、qCTB-5-2和qCTB-5-3分别被定位在第5染色体RM267与RM1237、RM2422与RM6054及RM3321与RM1054之间遗传距离分别为21.3cM、27.4cM和12.7cM的置换片段上;qCTB-7被定位在第7染色体RM11-RM2752区间遗传距离为6.8cM的置换片段上。  相似文献   

20.
In order to map the quantitative trait loci for rice stripe resistance, a molecular linkage map was constructed based on the F2 population derived from a cross between Zhaiyeqing 8 and Wuyujing 3. Reactions of the two parents, F1 individual and 129 F2:3 lines to rice stripe were investigated by both artificial inoculation at laboratory and natural infection in the field, and the ratios of disease rating index were scored. The distribution of the ratios of disease rating index in Zhaiyeqing 8/Wuyujing 3 F2:3 population ranged from 0 to 134.08 and from 6.25 to 133.6 under artificial inoculation at laboratory and natural infection in the field, respectively, and showed a marked bias towards resistant parent (Zhaiyeqing 8), indicating that the resistance to rice stripe was controlled by quantitative trait loci (QTL). QTL analysis showed that the QTLs detected by the two inoculation methods were completely different. Only one QTL, qSTV7, was detected under artificial inoculation, at which the Zhaiyeqing 8 allele increased the resistance to rice stripe, while two QTLs, qSTV5 and qSTV1, were detected under natural infection, in which resistant alleles came from Zhaiyeqing 8 and Wuyujing 3, respectively. These results showed that resistant parent Zhaiyeqing 8 carried the alleles associated with the resistance to rice stripe virus and the small brown planthopper, and susceptible parent Wuyujing 3 also carried the resistant allele to rice stripe virus. In comparison with the results previously reported, QTLs detected in the study were new resistant genes to rice stripe disease. This will provide a new resistant resource for avoiding genetic vulnerability for single utilization of the resistant gene Stvb-i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号