首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 890 毫秒
1.
遮光对紫椴幼苗光合特性的影响研究   总被引:1,自引:0,他引:1  
以2年生紫椴(Tilia amurensis Rupr)幼苗为材料,设定4个遮光度,对处理后叶片净光合速率日变化、光响应参数、叶绿素荧光参数等进行测量和系统分析。结果表明,随遮光度的增加,幼苗净光合速率、气孔导度、蒸腾速率和水分利用效率先升高后降低,胞间CO_2浓度先降低后升高;轻度遮光下,幼苗光响应参数光饱和点、最大净光合速率显著提升,光补偿点和暗呼吸速率降低;随着遮光度的增加,紫椴的光系统Ⅱ量子效率(Fv/Fo)和最大光化学效率(Fv/Fm)值逐渐升高;能量分配比例参数中吸收的光能被反应中心捕获的量子产量(φPo)、激子被反应中心捕获后促进电子传递到电子传递链中超过Q_A的电子受体的激子与促进Q_A还原激子的比值(Ψo)、反应中心所吸收的光能应用于电子传递的量子产量(φEo)逐渐增加,而热耗散的量子产量(φDo)逐渐减少;光系统Ⅱ比活性参数中单位反应中心所吸收的能量(ABS/RC)、单位反应中心所捕获的应用到还原Q_A的能量(TRo/RC)和单位反应中心耗散掉的能量(DIo/RC)值随着遮光度的增加逐渐下降,单位反应中心所捕获的应用到电子传递的能量(ETo/RC)值逐渐增加。紫椴叶绿素总量随着遮光度的增加而升高,叶绿素a/b值降低。结合隶属函数分析,轻度遮光下,紫椴幼苗叶绿素含量增加,日平均净光合速率和最大净光合速率最高,光合能力强,说明轻度遮光下有利于提升幼苗的光合特性,促进幼苗生长。  相似文献   

2.
利用叶绿素荧光仪测定了不同生物炭用量(0、0.5%、1%、2%、5%、10%)处理下紫花苜蓿叶片的快速荧光诱导动力学曲线,并采用JIP-test方法分析和处理数据,旨在探明不同用量生物炭对苜蓿叶片光合性能的影响。结果表明,施用生物炭处理能显著影响苜蓿叶片快速叶绿素荧光诱导动力学曲线。0.5%生物炭处理降低了苜蓿叶片J点的相对可变荧光强度(Vj)、OJIP曲线的初始斜率(Mo)和单位反应中心吸收、捕获、耗散、用于电子传递、传递到电子链末端的能量(ABS/RC、TRo/RC、DIo/RC、ETo/RC和REo/RC),提高了捕获的激子将电子传递到电子传递链Q-A下游的其它电子受体的概率(Ψo)、用于电子传递的量子产额(φEo)、PSⅡ最大光化学效率(φPo)和以吸收光能为基础的性能参数(PIabs)。1%~10%生物炭处理下苜蓿叶片各项指标较对照变化较小。因此施加0.5%生物炭能降低苜蓿叶片有活性的反应中心的关闭程度,改善苜蓿叶片PSⅡ受体侧电子传递链性能,提高最大光化学效率,增强苜蓿叶片的光合性能;但随着用量的增加,生物炭对苜蓿叶片光合性能的影响减弱。  相似文献   

3.
  目的  研究光合有效辐射与土壤水分变化对芒萁Dicranopteris dichotoma光响应进程及原初光化学反应的影响,分析芒萁单优层片发育成因。  方法  设置不同光合有效辐射[轻度遮光(透光率为35.96%,L1),中度遮光(13.00%,L2)和高度遮光(4.75%,L3)]与土壤水分[充足水分(土壤相对含水量为75%~80%,W1),中度干旱(50%~55%,W2),重度干旱(25%~30%,W3)]双因素控制试验,并以全光处理为对照,比较分析盆栽芒萁光合特征参数和叶绿素荧光诱导动力学参数的变化特征。  结果  ①轻度遮光条件下,重度干旱显著降低了芒萁的净光合速率(Pn)、表观量子效率(YAQ)和最大净光合速率(Pmax),轻度遮光条件下充足水分(W1)和中度干旱(W2)的Pn大约比重度干旱(W3)和对照(ck)高34.4%~69.2%;②中度遮光和高度遮光条件下,各浇水处理间芒萁的Pn大致相近且略高于ck,光补偿点(LCP)和暗呼吸速率(Rd)差异不显著(P>0.05),增加遮光强度能够缓解水分亏缺对芒萁的光合特征参数的负面影响;③在相同水分处理条件下,随着遮光强度增加,芒萁的荧光参数呈现先增加后下降的变化特征。④轻度和中度遮光下重度干旱降低了芒萁的光合机构能力,高度遮光时,随着土壤水分的降低,盆栽芒萁叶片的电子传递效率(ψO)、电子传递量子产额(φEo)、能量流参数和光合性能指数(PIABS)均出现上升趋势,说明弱光环境下芒萁表现出明显的抗旱性。⑤遮光和干旱处理未对芒萁的PIABS和综合性能指数(PItotal)产生显著的抑制作用,说明芒萁的PSⅡ没有受到严重损害。  结论  因此,中度遮光+充足水分组合处理有利于盆栽芒萁积累光合产物,中度遮光与中度干旱下盆栽芒萁拥有最高的PSⅡ活性,盆栽芒萁对遮光和土壤水分变化的环境表现出较强的适应性。图3表3参38  相似文献   

4.
以景观植物红叶石楠为试验材料,探究不同叶位和光照方位对红叶石楠叶片快速叶绿素荧光动力学曲线和光系统Ⅱ的影响。结果表明:红叶石楠生长于背阴低位处的叶片长势最好;植物叶片随着叶位的上升PSⅡ潜在活性(Fv/Fo)、PSⅡ最大光能转化率(Fv/Fm)和光化学指数(PIabs)呈现逐渐降低的趋势,并且背阴面Fv/Fo、Fv/Fm和PIabs值普遍高于向阳面,其中以背阴低位和中位处的值为最高;PSⅡ捕获能量从QA传递到QB的效率(ψo)、用于电子传递的量子产额(φEo)和用于热耗散的量子比率(φDo)随着叶位的升高呈上升趋势,背阴面的值低于向阳面,并且以背阴低位处的值为最低;植物背阴面叶片单位激发态面积反应中心数目(RC/CSo)、吸收的光能(ABS/CSo)、被反应中心捕获的光能(TRo/CSo)、用于电子传递的能量(ETo/CSo)都低于背阴面,随着叶位的不断升高RC/CSo、ABS/CSo、TRo/CSo、ETo/CSo值都呈下降趋势,并且存在显著性差异,用于热耗散的能量(DIo/CSo)无显著性差异,其中以背阴低位的比活性参数为最高;光照对叶绿素荧光快速诱导曲线(OJIP)有一定的影响,向阳面的OJIP曲线没有明显的J相和I相,不同叶位之间的OJIP曲线没有显著差异。  相似文献   

5.
弱光对茄子光合系统Ⅱ(PSⅡ)的影响   总被引:2,自引:0,他引:2  
根据快速叶绿素荧光诱导动力学原理,以遮光(光照强度相当于自然光照的40%)15 d 或30 d为处理,以同期生长不遮光(自然光照)为对照,用JIP-测定法分析了弱光对茄子光合系统Ⅱ(PSⅡ)结构和功能的影响.遮光使O-J的荧光上升速度明显加快.遮光导致反应中心捕获的激子中用来推动电子传递到电子传递链中超过QA的其它电子受体的激子占用来推动QA还原激子的比率(ψO)、单位叶面积上有活性的反应中心的比例(RC/CSO)、单位面积电子传递的量子产额(ET/CS)和单位叶面积热耗散(DI/CS)降低,但是反映单位反应中心活性的各项比活性参数如ABS/RC、TR/RC、ET/RC、DI/RC值却升高.最大光化学效率(φPo)受弱光影响不大,但以吸收光能为基础的性能指数PIABS和以单位面积为基础的性能指数PICS却分别减少22.76%和25.12%.通过以上结果我们得出如下推断:(1)遮光导致PSⅡ反应中心受体侧QA-往下的电子传递体减少,较多的光能被用来还原QA;(2)长期弱光条件不能满足叶片生长的需要,叶片中生成的PSⅡ反应中心数量减少,并产生了非QB还原反应中心(NQB);(3)在遮光胁迫下性能指数比最大光化学效率(φPo)更敏感,能更准确地反映遮光后PSⅡ光合结构的变化.  相似文献   

6.
为明确遮荫对紫叶风箱果叶片快速荧光特性的影响,以3年生紫叶风箱果为试材,分别以遮光度为30%,50%,80%的黑色遮荫网进行处理,以自然光照处理(0%)为对照,分析了不同处理后快速叶绿素荧光诱导动力学曲线及其参数。结果表明:紫叶风箱果叶片的叶绿素荧光参数Fm、Fv/Fm、Fv/Fo的值随遮荫度的增加显著增大;遮荫处理下,反应中心吸收的光能(ABS/RC)下降,PSⅡ反应中心用于电子传递的量子比率(φEo)及用于电子传递的能量(ETo/RC)随遮荫度的增加显著增大,而用于热耗散的量子比率(φDo)及用于热耗散的能量(DIo/RC)则显著降低。因此,遮荫处理后,紫叶风箱果叶片天线色素吸收的光能减少,但可通过PSⅡ电子传递效率的提高及热耗散能量的降低来提高叶片对光能的利用。  相似文献   

7.
通过测定叶绿素荧光参数,探讨了弱光[100μmol/(m2.s)]对番茄PSⅡ热失活的影响。在25~40℃处理下,Fo、Fv/Fm、TRo/CS、ETo/CS和DIo/CS变化不大,而45~50℃下黑暗处理引起番茄叶片Fv/Fm、TRo/CS和ETo/CS明显下降,Fo和DIo/CS显著升高,但弱光条件下,Fv/Fm、TRo/CS和ETo/CS下降的幅度小,Fo上升的幅度小。  相似文献   

8.
本文以牡丹‘卷叶红’叶为材料,利用快速叶绿素荧光动力学技术研究叶发育过程中牡丹光系统活性的变化.研究结果表明,随着叶面积的不断扩大,叶绿素含量不断增加,基于光吸收的性能指数(PIABS)变化灵敏.随叶的发育,单位面积上有活性反应中心数量(RC/CSo)和单位反应中心光能的传递(ETo/RC)不断增加,PQ库接纳电子的能力和PSⅡ电子传递能力在逐渐增强.叶发育前期,用于热耗散的能量比成熟叶高,也说明成熟叶对光能的利用率升高了.通过对PSⅠ和PSⅡ的同步性研究发现,PSⅠ活性的升高早于PSⅡ,这样可以避免PSⅡ受体侧电子的积累,减少活性氧的产生,对光系统起到一个保护作用.  相似文献   

9.
为了揭示毛竹Phyllostachys edulis快速生长期茎秆不同节间叶绿素荧光特征,以毛竹笋竹茎秆为材料,用YZQ-500型非调制式叶绿素荧光仪和JIP-test数据分析方法,研究了茎秆不同节间光合色素质量分数和叶绿素荧光参数的变化特征。结果显示:随着节间的升高,毛竹笋竹茎秆中叶绿素a,叶绿素b和类胡萝卜素质量分数显著下降(P < 0.05);单位面积捕获的光能(TRo/CSo),单位面积电子传递的量子产额(ETo/CSo),PSⅡ反应中心吸收光能用于电子传递的量子产额(φEo),PSⅡ最大光化学效率(φPo),光合性能指数(PIABS)和反应中心数量(RC/CSo)显著下降(P < 0.05);用于热耗散的量子比率(φDo),单位面积热耗散(DIo/CSo)和单位反应中心耗散掉的能量(DIo/RC)显著上升(P < 0.05),表明茎秆上下部节间的生长发育存在明显差异,中下部节间PSⅡ反应中心活性较强,光能转换效率较高,能量耗散较少,生长较快;上部节间光合功能相对较弱,生长比较缓慢。研究成果对明确毛竹快速生长机制具有参考价值。  相似文献   

10.
为探讨外源硒对干旱胁迫下烤烟生长和品质的调控效应,研究了不同浓度外源硒(4 mg/kg和12 mg/kg)对干旱胁迫下烤烟叶片快速叶绿素荧光诱导动力学特性和烟叶化学成分的影响。JIP-test分析显示,干旱胁迫后O-J-I-P曲线中出现了明显的K点,且△K值表现为干旱+12 mg/kg硒处理>干旱处理>干旱+4 mg/kg硒处理,说明4 mg/kg硒处理能够有效缓解干旱对光合机构的损伤,而12 mg/kg硒处理则加剧了干旱胁迫的伤害。干旱胁迫下最大光化学效率(Fv/Fm)、性能指数(PIABS和PItotal)、反应中心密度(RC/CSm)、叶片单位面积吸收(ABS/CSm)、捕获(TRo/CSm)和传递(ETo/CSm)的光能以及能量分配比率显著降低,而热耗散量子比率(φDo)和单位面积的热耗散(DIo/CSm)显著升高。4 mg/kg硒处理通过降低PSⅡ反应中心的损伤,促进电子在PSⅡ和PSⅠ之间的传递,优化能量在PSⅡ反应中心的分配来稳定光合系统的结构和功能,而12 mg/kg硒处理则进一步放大了干旱胁迫对烤烟叶片光化学活性和光合性能的抑制。干旱胁迫造成光合色素含量降低和烟叶品质下降,4 mg/kg硒处理能够有效提高干旱胁迫下叶片叶绿素含量,提高烟叶钾、还原糖和总糖含量,改善烟叶品质,而12 mg/kg硒处理表现出与干旱胁迫的协同效应,进一步降低了干旱胁迫下烟叶质量。  相似文献   

11.
为探究干旱荒漠区生草覆盖对果园苹果光合特性和叶片质量的影响,选用富士苹果,设置清耕和生草覆盖处理,研究不同处理对苹果叶片光合特性日变化及叶片质量的影响。结果表明,生草覆盖与清耕处理的果园空气相对湿度(RH)及苹果叶片的净光合速率(Pn)、气孔导度(Gs)、水分利用率(WUE)及光能利用率(LUE)的日变化趋势相似,生草覆盖提高了苹果叶片的Pn、Gs、RH、WUE、LUE,降低了叶片胞间CO2浓度(Ci)、蒸腾速率(Tr)及空气温度(Ta)。通径分析发现,清耕处理的Ta对Pn有限制作用,Gs、Ci、Tr和RH是Pn的主要决定因子;生草覆盖处理的Ta和RH对Pn有限制作用,Gs、Ci和Tr是Pn的主要决定因子。果园生草覆盖增加了叶片的鲜重、干重、比叶重、叶绿素含量及K元素含量。研究表明果园生草覆盖适合在干旱荒漠区推广使用,为干旱荒漠区果园生草覆盖提供理论依据。  相似文献   

12.
  目的  光照是影响植物生长发育最重要的生态因子之一,分析遮光处理对连香树Cercidiphyllum japonicum幼苗生长及生理功能的影响,进而为其种苗繁育和拯救保护提供科学依据。  方法  通过人工遮光设置了全光照(L0)、透光率55% (L1)、透光率25% (L2)、透光率10% (L3) 4种光环境,应用LI-6400光合仪测定了不同光照条件下连香树幼苗的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间二氧化碳摩尔分数(Ci)的日变化,并通过野外取样和透射电镜技术观察了遮光条件下幼苗的生长形态及叶肉细胞超微结构的变化。  结果  ①遮光影响叶片含水量及叶片形态。随着遮光强度的加大,叶片含水量、单叶面积增加,比叶重减小,比叶面积增大,并与对照相比呈现显著差异(P<0.05)。②遮光对幼苗的光合作用产生了显著影响。全光和L1处理下Pn的变化曲线相似,均呈现不对称的“几”字形变化,未出现“午休”现象,14:00出现峰值,L2和L3处理的Pn变化相对缓和,峰值出现在12:00;Gs呈现与Pn类似的变化,而Ci则呈基本一致的凹形变化。Pn、Gs和Tr的日均值从大到小依次为L0、L1、L2、L3,Ci则呈现相反的序列变化。③ 遮光条件下,叶片叶绿素和类胡萝卜素质量分数均有一定程度增加,且随着遮光强度的加大其质量分数递增,提高了叶片的捕光能力。④全光下,叶肉组织中细胞轮廓可鉴,叶绿体数量少,紧靠细胞壁平行分布,细胞中央形成大的空腔,类囊体排列均匀,淀粉粒和嗜锇颗粒较少;遮光条件下细胞内叶绿体数量有所增加,在整个细胞中占有比例显著增大,叶绿体外形逐渐变为圆球形或椭圆形,淀粉粒数量较多,类囊体片层厚度加大,提高了弱光下的光合效率。⑤强度遮光条件(L2和L3)下,连香树苗高(H)和基径(D)依次递减,生物量模型D2H显著下降,幼苗正常的生长发育变缓;但轻度遮光(L1)与对照相比幼苗的生长指标未出现显著差异。  结论  连香树对遮光具有一定的忍耐性和可塑性,轻度遮光未对幼苗的生长带来抑制性影响;轻度遮光有利于改善林内微环境,但有效辐射光强应达自然光强的55%以上。图3表4参29  相似文献   

13.
  目的  研究紫茎Stewartia sinensis幼苗对不同光强和土壤氮素质量分数的光合生理生态适应差异性,筛选紫茎幼苗适宜的光强和氮素处理组合。  方法  选择1年生紫茎幼苗为试验材料,设置4个透光率分别为全光100.00%(L0)、轻度遮光(44.79 ± 0.51)%(L1)、中度遮光(19.60 ± 0.23)%(L2)、高度遮光(7.25 ± 0.10)%(L3),3个施氮量分别为低氮0.2 g·kg?1(N1)、高氮0.6 g·kg?1 (N2)和不施氮(N0),经90 d处理测定不同光、氮处理下紫茎幼苗的光响应过程、光合色素质量分数和叶绿素荧光参数。  结果  光强、氮素及其交互作用对紫茎幼苗的光合色素质量分数和叶绿素荧光参数的影响均达显著水平(P<0.05)。紫茎幼苗的叶绿素a/b为2.0~2.5,光补偿点(LCP)为4.8~26.0 μmol·m?2·s?1,光饱和点(LSP)为571.3~931.4 μmol·m?2·s?1。随着遮光程度的增加,紫茎幼苗的叶绿素和类胡萝卜素质量分数、初始荧光(Fo)、最大荧光(Fm)、表观量子效率(AQY)趋于增大,叶绿素a/b、类胡萝卜素/总叶绿素的比值下降,最大净光合速率(Pmax)、暗适应下光系统Ⅱ(PSⅡ)潜在活性(Fv/Fo、PSⅡ)最大光能转化效率(Fv/Fm)和以吸收光能为基础的性能指数(PIABS)呈现先升高后降低的特点。随着施氮量的增加,紫茎幼苗PIABS趋于增大,叶绿素a/b、Fo和Fm趋于减小。叶绿素和类胡萝卜素质量分数、Pmax、AQY呈现先升高后降低的特点。在L1和L2光强下,紫茎幼苗的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)较高,且胞间二氧化碳摩尔分数(Ci)较低,此时施用低氮对Pn、Gs和Tr有明显促进作用。L1N1的Pmax相较L1N0增加了45.21%,L2N1的Pn和Pmax均最高。  结论  紫茎幼苗在中度遮光和低氮处理下的光合能力最佳,在全光或高氮处理下会出现光合抑制现象。图1表6参34  相似文献   

14.
【目的】探讨不同氮形态叶面肥处理对油茶春梢叶片光合作用的影响,为油茶林种植经营管理提供参考。【方法】以岑软3号为试验材料,设置4个不同含氮素形态配比的叶面肥处理,即N1~N4处理,分别添加尿素(酰胺态氮)、硫酸铵和硝酸钾按1:1(硝铵态氮)、硫酸铵(铵态氮)、硝酸钾(硝态氮),含纯氮量一致均配比中微量元素和生长物质,以只添加中微量元素与生长物质的处理为对照(CK)。测定各处理的油茶叶片光合参数和光合色素含量,并用直角双曲线模型等4种模型对不同处理的光合—光响应曲线进行拟合,评价不同氮形态叶面肥的肥效。【结果】在1000μmol/(m2·s)光强下,不同氮形态叶面肥处理均可提高净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs),降低胞间CO2浓度(Ci),其中铵态氮与硝态氮混施处理(N2)的Pn、Gs和Tr值均显著高于其他处理(P<0.05,下同),Ci显著低于其他处理。实测光响应曲线中,随光照强度增加,不同氮形态叶面肥处理均能使Gs、Tr和Pn值上升、Ci值下降,铵态氮与硝态氮混施处理的Gs、Tr和Pn上升更快,而Ci则表现为下降更快;通过光响应曲线拟合比较,得出最佳模型为直角双曲线修正模型。得出不同氮形态叶面肥处理均提高叶片的表观量子效率(α)和最大净光合速率(Pn-max)值,其中铵态氮与硝态氮混施处理的α和Pn-max提高幅度最大,分别为0.072和8.5473μmol/(m2·s);同时降低光补偿点(LCP)值,其中铵态氮与硝态氮混施处理的LCP值最小;提高了叶片光合色素含量,其中铵态氮与硝态氮混施处理的含量最高。【结论】不同氮形态叶面肥处理均有利于提高油茶春梢叶片光合作用,效果最佳的是以铵态氮与硝态氮混合配施的叶面肥。  相似文献   

15.
不同光强处理对三叶青光合特性的影响   总被引:2,自引:2,他引:0  
为探讨适宜三叶青Tetrastigma hemsleyanum生长的光强环境,并为其人工栽培和林下栽培提供基础,以2年生三叶青扦插苗为试验材料,对它们进行不同梯度的遮光处理,梯度设置为全光照(ck),遮光30%,50%,70%和90%,研究光强对三叶青不同生育时期(快速生长期与高温缓慢生长期)的光合特性的影响。采用体积分数为95%乙醇浸提法测定三叶青叶片中光合色素,利用LI-6400XT便携式光合系统测定仪测定叶片净光合速率(Pn),气孔导度(Gs),胞间二氧化碳摩尔分数(Ci)和蒸腾速率(Tr)等指标,计算光饱和点(LSP),光补偿点(LCP),量子效率(AQE),暗呼吸速率(Rd)和最大净光合速率(Pmax),并拟合光响应曲线。结果表明:随着遮光程度的增加,叶绿素a,叶绿素b,总叶绿素和类胡萝卜素总体上呈现上升趋势,但是在不同生育时期变化不大;多数光合指标亦随遮光程度增加而呈现增长趋势,多在遮光70%时达到最大值之后下降,且快速生长期(Pn为4.19 μmol·m-2·s-1,Gs为53.54 mol·m-2·s-1,Tr为0.98 mmol·m-2·s-1,LSP为340.49 μmol·m-2·s-1,AQE为0.18 mol·mol-1,Rd为1.20 μmol·m-2·s-1,Pmax为5.34 μmol·m-2·s-1)比高温缓慢生长期(Pn为1.74 μmol·m-2·s-1,Gs为17.53 mol·m-2·s-1,Tr为0.36 mmol·m-2·s-1,LSP为159.28 μmol·m-2·s-1,AQE为0.06 mol·mol-1,Rd为0.70 μmol·m-2·s-1,Pmax为2.45 μmol·m-2·s-1)数值高41.67%~67.26%;Ci和LSP呈现先下降后趋于稳定趋势,表明高温缓慢生长期的强光、高温、低湿等环境条件使其光合活跃度下降,对植株生长产生胁迫。综合试验结果得出结论,不同生育时期三叶青均在遮光度70%的条件下生长适宜。  相似文献   

16.
不同贮藏时间对菠菜新鲜度指标的影响   总被引:2,自引:0,他引:2  
为建立快速检测菠菜新鲜度的方法,本试验以叶片叶绿素含量和可溶性蛋白含量为参照,用植物效率分析仪(PEA)检测菠菜采后叶绿素荧光参数的变化。结果显示,随着室温保存时间的延长,菠菜叶片的叶绿素和可溶性蛋白显著下降,下降最快的时间分别是第3天和第2天。叶绿素荧光指标中Fm/Fo、Fv/Fm和RC/CSo与叶绿素及蛋白质含量的变化趋势相同且反应灵敏;ABS/CSo和D Io/CSo则随着室温保存时间的延长而增大,但ABS/CSo的增大可能是由于叶片透光度增加引起的。Sm、TRo/CSo、ETo/CSo等指标虽有一定的规律性变化,但反应不如上述荧光指标灵敏。以上结果表明,Fm/Fo、Fv/Fm、RC/CSo和D Io/CSo均可作为检测菠菜新鲜度的灵敏指标。  相似文献   

17.
采用单因素试验和正交试验方法,研究了不同施肥处理对银杏Ginkgo biloba叶片中的氮、磷和钾质量分数以及新梢叶片光合作用的影响,为银杏用材林的施肥提供理论依据。结果表明:银杏对氮和钾的吸收有协同作用,在氮和钾肥单施时,叶片中氮和钾元素质量分数变化趋势相同。单施磷肥对银杏吸收土壤中的氮和钾有抑制作用,配施时土壤中磷元素高,对氮影响较大,对钾影响较小。在单施处理中,净光合速率均是在氮、磷和钾最大施肥量时达到最大值,不同施肥处理间差异显著(P<0.05),蒸腾速率、气孔导度和胞间二氧化碳摩尔分数变化无规律。配施处理中,蒸腾速率、气孔导度和胞间二氧化碳摩尔分数都是在处理2(氮肥100 g·株-1,磷肥400 g·株-1,钾肥40 g·株-1)达到最大值,净光合速率是在处理5(氮肥200 g·株-1,磷肥400 g·株-1,钾肥90 g·株-1)达到最大值。氮、磷、钾同施能够使土壤元素含量更均衡,促进银杏对营养元素的吸收,提高叶片光合作用效能。图4表6参18  相似文献   

18.
以黑彤K 8西瓜植株为试验材料,研究了不同程度缺氮条件下西瓜叶片的光合特性和生长生理变化规律,旨在为检测和诊断西瓜的缺氮程度并科学指导施肥提供理论依据。结果表明:随着缺氮程度的加剧,西瓜叶片的叶绿素和可溶性蛋白含量均明显下降,其中叶绿素含量的下降幅度大于可溶性蛋白含量;叶片的净光合速率(Pn)和气孔导度亦显著降低,且西瓜植株的总生物量减小,根冠比增大,表明缺氮对西瓜植株的生长及光合生理特性具有显著的抑制作用。叶绿素荧光动力学结果表明,缺氮处理的叶片Fv/Fm,Sm,ETo/CSo和RC/CSo均明显低于对照,并随缺氮程度的加剧而呈递减趋势,其中Sm对缺氮最为敏感,而ABS/CSo,TRo/CSo和DIo/CSo等参数对缺氮并不敏感。此外,从相关性分析显示,Sm与Pn、Fv/Fm、总生物量的相关性均达极显著水平。说明叶绿素荧光动力学参数可以灵敏检测出缺氮西瓜叶片光合特性的变化,可作为诊断西瓜缺氮程度的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号