首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铁、镁、锌营养胁迫对植物体内活性氧代谢影响机制   总被引:7,自引:2,他引:7  
活性氧是植物体内常见的一类自由基,对植物有很强的伤害。本文总结了铁、镁、锌元素胁迫影响植物体内活性氧代谢机制。铁对于催化植物体内的Haber-Weiss反应产生活性氧具有重要作用。镁诱导植物体内活性氧代谢失调与光氧化有密切关系。缺锌条件下,植物体内活性氧含量升高,其机制是多方面的:NADPH氧化酶氧化能力提高,O2产生增多;体内铁浓度升高,增强了铁诱导的活性氧的产生;光氧化伤害加重;清除系统活性降低。  相似文献   

2.
渍水对小麦氮磷钾营养效应的研究   总被引:5,自引:0,他引:5  
常江  李金才 《土壤学报》1999,36(3):423-427
渍害是我国小麦生产的主要自然灾害之一,严重影响到小麦产量.其原因可能是渍水使得土壤氧亏缺,抑制了作物的生理代谢,改变了植物营养状况和土壤养分的有效性;或是由于较低的土壤氧化还原电位使得营养的吸收与累积下降[1~3].  相似文献   

3.
植物抗氧化逆境的基因工程(综述)   总被引:7,自引:0,他引:7  
生物逆境如细菌,真菌,病毒和非生物逆境如辐射,除草剂,创伤,臭氧,二氧化硫,极端温度及水分胁迫等引起植物的初始反应都是活性氧类的增加,利用分子生物学手段,对植物的氧化代谢进行修饰,提高植物抗氧化胁迫的能力,进而抗生物和非生物逆境已成为近年来植物抗性研究的一个新方向。  相似文献   

4.
硫氧还蛋白是一类催化二硫键氧化还原的小蛋白,它通过调控细胞中氧化还原状态发挥重要的作用。在植物中,硫氧还蛋白系统尤为复杂,参与了植物的新陈代谢、转录翻译调控、信号传导以及植物的抗逆反应等。本文主要通过对植物硫氧还蛋白分类、活性位点、结构以及3种硫氧还蛋白系统研究现状进行概述,并对植物的硫氧还蛋白及系统进行了展望,从而较为全面地综述了植物的硫氧还蛋白系统,为进一步了解硫氧还蛋白在植物体内的作用机制奠定基础,也为今后的相关研究提供参考。  相似文献   

5.
含有不同营养成分的肥料(特别是化学肥料),如何合理配合施用,以达到既经济而又高产的目的,确是农业生产上存在的实际问题。这一问题的解决,一方面有赖于对土壤条件的了解,另一方面也必须探明植物本身对营养物质的需要。植物需要多种营养元素,这些元素在生理上都直接或间接地存在着一定的相互关系。譬如,氮素营养与磷素营养就有明显的依赖性;当磷素供应不足时,氮素的吸收与代谢就会遭到严重的破坏;反之,氮素又是植物利用磷素不可缺少的条件。钾素营养与氮素代谢亦有密切的相关;不少试验证明,当钾素供应充足时,进入植物体内的氮素就较多,形成的蛋白质亦较多。  相似文献   

6.
铁蛋白(ferritin)是一类铁贮存蛋白,普遍存在于动物、植物和细菌体内,具有调节铁代谢平衡和解除亚铁离子毒性的双重功效。而且植物铁蛋白所贮存的铁是豆科植物早期萌发生长所必需的营养元素,同时,植物铁蛋白也代表着21世纪新型的补铁功能因子,所以对其铁氧化沉淀和还原释放的研究在生理学和营养学上具有重要意义。与动物铁蛋白相比,植物铁蛋白在结构上具有明显不同的特点,如成熟的植物铁蛋白在N末端含有其特有的EP(extension peptide)肽段,植物铁蛋白只含有H亚基,即H-1和H-2亚基,特殊的结构导致植物铁蛋白具有不同的活性及功能。本文对植物铁蛋白的结构与功能、铁氧化沉淀机理和铁还原释放机理等方面进行了综述,旨在为今后植物铁蛋白的深入研究提供参考资料。  相似文献   

7.
不同化感物质对入侵植物五爪金龙保护酶系统的影响   总被引:1,自引:0,他引:1  
五爪金龙[lpomoea cairica (Linn.) Sweet]属旋花科(Convolvulaceae)番薯属多年生草质藤本植物,原产美洲,上世纪早期引入中国[l].该植物有很强的攀援能力,其生态适应性广泛,生长迅速,繁殖力强,常在路旁、林缘、河岸滩涂、撂荒地及果园等生境中形成群落优势种群,影响农林业生产[1],破坏生物多样性,已成为华南地区的主要入侵杂草.目前对五爪金龙的主要防除措施是使用化学除草剂或人工拔除.众所周知,化学除草剂不仅会导致降解残毒在环境中累积,并通过物质循环进入生物链,而且长期使用化学除草剂往往会使杂草产生抗性;而人工拔除效率低,费工费力.因此筛选有效的植物源除草剂十分必要[2-4],而利用单体化感物质是筛选和开发植物源除草剂的重要途径[5-6].  相似文献   

8.
铀是一种具有较高化学毒性的放射性核素。铀矿开采、核事故泄露、核废物的不恰当处理等会对周围土壤造成放射性污染。植物体内富集的铀可通过食物链进入人体,从而对人体健康造成伤害。国内外学者针对铀污染土壤的植物修复技术开展了一系列研究工作。本研究系统地总结了铀对植物胁迫效应的研究进展,主要包括铀对植物生长发育、生理生化、基因毒害、水分代谢和营养代谢等方面的影响。并结合当前研究现状,对未来的研究方向进行了展望。本研究结果为进一步阐释富集植物对铀的吸收和转运机制,以及铀污染土壤的植物修复提供了理论依据,对于监测治理铀污染土壤和保护生态环境具有重要意义。  相似文献   

9.
土壤中含有人类已经发现的大多数化学元素,构成了植物矿质营养的主要来源.植物体内元素的种类也高达70余种,其含量从10-16到10-1,差异巨大.如果把土壤的化学组成和植物体内必须营养元素组成加以比较,可以看出两者之间存在相当大的差别.其中一些元素在土壤中的含量很高,但植物的需求量很低,如Si、Al、Fe等;而另一些元素在土壤中含量很低,但却是植物需求量较多的元素,如N、P、S;正是这些差异构成了土壤化学组成和植物营养之间关系的基础[1].元素的原子序数即核电荷数决定了元素的内在性质,一般的土壤和植物分析结果也表现出原子序数越大的重金属元素,其在土壤和植物中的含量也越低.Zipf法则由于具有普适性的特点,已被广泛地应用于离散型分布的研究[2],为了解土壤与植物中元素含量与元素原子序数之间存在的关系,利用Zipf法则对土壤与植物体内元素含量与原子序数之间的关系进行了研究.  相似文献   

10.
植物氮素循环过程及其根域调控机制   总被引:2,自引:0,他引:2  
植物对氮素的吸收与平衡能力是反映其生理状况的一个重要指标。根系吸收的NO3-和NH4 进入根细胞以后,可随蒸腾流由木质部导管运到植株地上部,运移到地上部的氮素除了参与生理代谢外,部分氮素又以氨基酸的形态通过韧皮部向根部转运。在概述根系对氮素吸收能力、不同氮素形态的吸收机理及其模拟模型、氮素在植物体内循环调控机理的基础上,分析了根域环境对植物体内氮素循环的影响机理,深入研究植物氮素循环过程对于阐明氮素高效利用机理具有重要意义,为植被恢复重建和生产力改善提供科学依据。  相似文献   

11.
如何有效地去除污染区农作物体内持久性有机污染物(POPs),以规避作物POPs污染风险、保障农产品安全,实现污染土壤的资源化利用备受国际关注。植物体内含有内生细菌(EB),其数量和种类丰富,且能重新定殖在目标植物组织的间隙或细胞内部,促进植物生长、提高植物抗逆性,甚至减少植物体内POPs含量。能否利用植物-功能EB的微生态系统,从污染区植物体内获得具有POPs降解特性的功能EB,并将其重新定殖在目标农作物中,进而降低作物体内POPs含量、规避作物污染风险?本文综述了农业生态系统中作物体内POPs的污染现状及植物对POPs的吸收调控作用,系统地评估了具有POPs降解特性的功能EB在目标植物体内的定殖、传导及效能,阐释了功能EB调控植物体内POPs污染的作用机理,展望了功能EB定殖在作物体内调控其POPs污染的优点及仍需解决的技术问题,旨在为利用植物-功能EB的微生态系统规避作物体内POPs污染风险、保障农产品安全和人群健康提供新思路和途径。  相似文献   

12.
植物对不同形态磷响应特征研究进展   总被引:2,自引:1,他引:1  
磷是植物生长发育所必需的大量营养元素之一,参与植物体内许多重要化合物的合成与代谢。土壤中磷素具有多种形态,且不同形态磷的植物有效性差异较大;植物在不同形态磷环境下,体内会形成相应的适应性机制。植物吸收积累磷通常与根形态、根系分泌物、体内磷转运等因素有关,受到特异基因表达的调控。了解植物对磷的吸收积累特性是筛选磷高效植物或磷富集植物的前提,也是充分利用土壤磷素资源、修复磷过剩环境的关键。根据国内外研究现状,本文从磷素吸收积累、根系形态特征、磷酸酶与植酸酶的变化以及磷营养高效的分子机制,综述了植物对不同形态磷的响应特征,并对未来该领域的研究进行了展望。  相似文献   

13.
水稻磷素吸收与转运分子机制研究进展   总被引:6,自引:4,他引:2  
磷素是植物体内重要的大量元素之一,其含量约占植物干重的 0.2%。由于磷元素作为许多重要生物大分子的关键组分,且参与植物体内许多的生理生化反应,因此植物的生长和发育都离不开磷元素。植物在长期的进化过程中,形成了一套高效地吸收和利用磷素的分子调控机制。本文将重点阐述水稻中无机磷从土壤吸收进根系再转运到地上部并进行分配的分子机制,并对今后的水稻磷素吸收和转运的研究重点进行展望。水稻根系主要通过定位在细胞膜上的磷酸盐转运体 (Phosphate Transporter1,PHT1) 吸收土壤中无机磷。当无机磷被吸收进入根系细胞内部后,通过质外体和共质体两种养分的运输途径,将其运输到根中维管束,并通过PHO1 将无机磷由根系加载到地上部。然后水稻根据其地上部不同组织器官对无机磷的需求进行分配,而多余的无机磷将储存在液泡内,维持细胞内无机磷的平衡。目前对磷酸盐转运体吸收磷素的分子机制研究较为清楚,但对于磷素在植物体内的储存、分配和再利用过程的机制还研究较少。液泡作为水稻无机磷储存的主要部位,对于维持细胞内无机磷的平衡尤其重要;节是水稻营养元素 (包括磷素) 在地上部进行分配的重要部位。但目前对于定位于液泡膜上和节上的磷酸盐转运体的机制研究较少。因此,未来挖掘与解析水稻体内负责磷素储存、分配和再利用的磷酸盐转运体及其作用机制,能为培育磷高效利用的水稻提供新的依据。  相似文献   

14.
菠菜甜菜碱醛脱氢酶基因的分离和诱导表达   总被引:7,自引:0,他引:7  
植物体内的甜菜碱由胆碱经两步不可逆的氧化反应合成,甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)是合成甜菜碱的关键酶,催化甜菜碱醛氧化为甜菜碱。本研究从菠菜叶片中分离了BADH基因,并将该基因与其它植物的BADH序列作了同源性分析,同时,证实了菠菜BADH基因的转录与表达受干旱和盐胁迫的诱导。  相似文献   

15.
铁是植物所必需的微量矿质元素,在光合作用、呼吸作用等过程中发挥着重要的作用。虽然铁在地壳中含量丰富,但生物有效获取率非常低。因此,探索高等植物铁吸收及运输机制一直是植物铁营养领域研究的热点问题。近几年来,人们对于高等植物体内铁运输,尤其是细胞内铁运输又有了新的认识。本文主要对高等植物体内长距离铁运输(木质部,韧皮部)和细胞内的铁运输(液泡,叶绿体和线粒体)两方面的运输机制进行了综述,这将帮助我们进一步了解植物铁代谢机制,对我们培育高铁含量作物和提高植物抗逆性有着重要意义。  相似文献   

16.
阐述了植物对不同形态硒的吸收、转运和形态转化机制。植物主要吸收水溶性硒,包括部分有机硒、硒酸盐和亚硒酸盐。多数研究表明植物对硒酸盐的主动吸收是通过高亲和力的硫酸盐转运子完成,最近的研究表明磷酸盐可以调节亚硒酸盐的吸收,磷酸盐转运子在亚硒酸盐的主动吸收过程中有重要作用;植物吸收的硒酸盐很快从根部转移到地上部,在叶片中被还原成亚硒酸盐,进而转化为有机硒化物进入其他组织;而亚硒酸盐及其代谢产物主要积累在根部,极少转移到地上部。进入植物体中的硒转化为含硒氨基酸和硒蛋白参与植物的代谢。  相似文献   

17.
江树人 《核农学报》1988,2(2):109-113
本文采用放射性同位素示踪技术研究了久效磷在棉苗体内的吸收,分布和代谢。 试验结果表明:用久效磷涂抹茎秆后,药剂可以在植物体内部迅速向上和向下传输。在涂抹剂量相同的情况下,双侧涂抹比单侧涂抹效果更好。 久效磷在棉苗体内降解形成一个R_f值为0.11的代谢产物,它可能是N-羟甲基代谢物与植物体内的糖相结合形成的水溶性轭合物。久效磷在棉苗体内代谢速度较慢,给药处理6天后,棉苗的萃取液中69.8%的放射性物质是以母体化合物的形式存在。  相似文献   

18.
植物对氨基酸的吸收利用及氨基酸在农业中的应用   总被引:10,自引:2,他引:10  
植物对氨基酸的吸收、转运、代谢以及氨基酸在肥料和农药上的应用国内外已有报道。已有研究证明,植物可直接吸收土壤中的氨基酸分子,其吸收后的转运、分配、代谢因氨基酸种类而异,产生的生理效应也不相同;氨基酸农药易被日光分解或被自然界微生物降解,在土壤中、植物体内不留残毒,其降解产物还可作为农作物的营养物质,提高农作物的品质和产量,施用这类农药,人畜安全,没有公害;氨基酸肥具有促进植株生长发育、增强抗逆性、改善土壤状况和提高作物产量的作用。  相似文献   

19.
硒是人类和动物必需的微量营养元素。目前我国居民的膳食普遍存在硒摄入量不足的现象,因此提高粮食作物中硒的含量,研究水稻硒营养吸收对改善我国居民硒营养状况具有重要意义。在总结相关文献的基础上,概要介绍了稻田土壤硒的赋存形态、有效性及其影响因素,并从水稻体内硒的含量、吸收积累和代谢途径等方面总结水稻体内硒的吸收特性和代谢机制。施硒能促进水稻产量的增加,提升水稻的品质,并能够调节水稻的光合作用,增强其抗氧化能力和抗逆性,从而保护水稻的正常生长发育。虽然目前已有研究在水稻体内硒的吸收、转运及代谢机制等方面取得一定的进展,但有关富硒的调控机制、遗传机制以及硒与其他植物营养元素的互作协同机制同样也值得深入研究,为生产富硒水稻和植物硒资源的开发利用提供理论依据。  相似文献   

20.
刘支前 《核农学报》1993,7(4):231-236
试验表明,亲脂性很强的二硝基苯胺类除草剂——除草通经简单的扩散作用进入菟丝子幼苗组织,幼苗的生理状态及介质的酸碱度不影响这种被动吸收过程。咪唑啉酮类除草剂——灭草喹的吸收是与幼苗代谢相联系的、需要能量的“弱酸俘获”过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号