首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-molecular-weight glutenin (HMW-GS) and low-molecular-weight glutenin (LMW-GS) subunits play an important role in determining wheat quality. To clarify the contribution of each subunit/allele to processing quality, 25 near-isogenic lines with different HMW-GS and LMW-GS compositions grown at two locations during the 2010 cropping season were used to investigate the effects of allelic variation on milling parameters, mixograph properties, raw white Chinese noodle (RWCN) and northern style Chinese steamed bread (NSCSB) qualities. The results showed that Glu-B1 and Glu-B3 made a large contribution to determining mixograph properties and processing quality, respectively. Subunit pairs 17 + 18 and 5 + 10, and alleles Glu-A3b, Glu-A3d, Glu-B3g and Glu-D3f made significant contributions to mixograph properties and no significant difference was detected on most parameters of RWCN and NSCSB for the allelic variation of HMW-GS and LMW-GS. The allelic interactions among glutenin loci had significant effects on wheat quality. The line with 1, 17 + 18, 2 + 12, Glu-A3c, Glu-B3b, Glu-D3c associated with superior mixograph properties, the line with 1, 7 + 9, 2 + 12, Glu-A3c, Glu-B3d, Glu-D3c had superior viscoelasticity of RWCN, and the line with 1, 7 + 9, 2 + 12, Glu-A3e, Glu-B3b, Glu-D3c had the highest total score of NSCSB. These results provide useful information for genetic improvement of the qualities of traditional Chinese wheat products.  相似文献   

2.
Five different Glu-B1 HMW-GS patterns were identified among a collection of diverse durum wheat genotypes grown in 2001 in two locations in western Canada. The durum wheat lines exhibited a wide range of dough and gluten strength characteristics as measured by alveograph and 2 g mixograph parameters, gluten index (GI), and protein composition as measured by unextractable polymeric protein (UPP) content and the ratio of high-molecular weight (HMW) glutenin subunits (GS) to low-molecular weight (LMW) GS. HMW-GS subunits patterns represented within the genotypes were 6+8, 7+8, 7+16, 14+15 and 20. Two of the genotypes expressed Glu-A1 HMW-GS 2* in combination with other HMW-GS. Approximately 95% of the durum genotypes were γ-gliadin 45 types. Analysis of variance indicated that genotype was a greater source of variation in all measurements than was growing location, with the exception of protein content which showed less variation contributed by genotype and more contributed by location than for other quality parameters. UPP was strongly associated with all strength measurements. All of the γ-gliadin 42 types were low in UPP and weak. Among the γ-gliadin 45 types, those possessing HMW-GS 20 were typically in the lower half of the UPP and strength range. There was no clear evidence of an association between any of the other HMW-GS patterns and gluten strength. The majority exhibited HMW to LMW-GS ratios that were within the relatively narrow range of 0.15–0.25, yet there were wide variations in dough strength among genotypes within that range. Increasing proportions of HMW-GS resulting in ratios of greater than 0.30 were generally associated with weak dough and gluten and low UPP content.  相似文献   

3.
Durum wheat is an important food crop used primarily for pasta production. High-molecular-weight glutenin subunits (HMW-GS) encoded by the closely linked genes Glu-B1x and Glu-B1y are known for their combined effects on pasta quality, but their individual contributions and interactions remain poorly understood. In this study, we show that individual loss-of-function mutants of Glu-B1x (ΔBx6) and Glu-B1y (ΔBy8) were associated with significant reductions in gluten strength compared to the wildtype, with stronger effects in the ΔBxy double mutant. Reductions in gluten strength were reflected in reduced mixograph and alveograph parameters, gluten index, faster extrusion flow rates and increased cooking loss. Interestingly, the Glu-B1x mutation was also associated with significant increases in grain and semolina protein content, increased pasta firmness, reduced starch viscosity and increased amylose in ΔBx6 and ΔBxy. In general, the ΔBx6 mutation had stronger effects than the ΔBy8 mutation, and significant interactions between the two genes were frequent. In addition to the basic knowledge gained on the individual effects of the Bx6 and By8 subunits and their interactions, the genetic stocks developed in this study provide useful tools to study the effects of natural or synthetic HMW-GS on pasta quality parameters in a background lacking endogenous HMW-GS.  相似文献   

4.
为了从分子水平上探讨优质小麦资源中LMW-GS等位基因与小麦品质的关系,以及在改善小麦品质方面的潜在价值,利用小麦Glu-A3和Glu-B3基因的特异引物从强筋型、中筋型和弱筋型小麦共计10份材料中分离出LMW-GS基因后进行序列分析。结果表明,共发现14个新的核苷酸变异类型和4个肽链变异类型。其中,14个新的核苷酸变异类型中,4个为Glu-A3基因变异类型,1个为Glu-B3基因变异类型,9个为Glu-D3基因变异类型。值得注意的是,有2个半胱氨酸数目特殊的亚基类型被发现,一个是来自师栾02-1含有9个半胱氨酸残基的GluA3-18基因,另一个是来自偃展4110含有7个半胱氨酸残基的GluD3-13基因。  相似文献   

5.
Quantitative trait loci (QTLs) responsible for gluten strength measured by SDS-sedimentation volume (SV), mixograph and grain protein content (GPC) were located on the molecular linkage map of a durum wheat recombinant inbred line population. QSv.macs-1B.1 flanked by Xgwm550–Glu-B3 was the most consistent QTL for SV identified in all the environments. The same QTL was also associated with mixograph peak energy, peak time and total energy. The Glu-B1 locus was at the center of another QTL responsible for SV, while, Glu-B2 influenced SV as well as mixograph peak energy and peak time. Apart from glutenin coding loci, QTLs influencing mixing parameters and GPC were located in three other marker intervals Xwmc48.2–Xpsp3030 (4B), Xgwm573–Xbarc231.1 (7A) and Xgwm46–Xgwm540.1 (7B). A total of 26 main effect QTLs and 10 digenic epistatic interactions (QQ) for quality traits were distributed over 11 chromosomes. Out of these, seven main effect QTLs and three QQ interactions were involved in interactions with environments (QE, QQE). The results indicated that along with chromosome 1B, chromosomes 4B, 7A and 7B are also important for improvement of gluten strength and GPC in durum wheat.  相似文献   

6.
Thirty-seven varieties of a Mediterranean durum wheat collection grown in Tunisia and Spain were analysed for their allelic composition in prolamins, as well as their protein concentration, sodium dodecyl sulphate sedimentation (SDSS) test and mixograph parameters. Genotype was a greater source of variation in all measurements than locality. Uncommon high and low molecular glutenin subunits (HMW-GS and LMW-GS) were found (V and 2•• subunits at Glu-A1, 13 + 16 at Glu-B1, 5* subunit and ax allele at Glu-A3). The rare combinations 2 + 4+14 + 18 and 8 + 9+13 + 16+18 subunits at the Glu-B3 locus were found. Glu-A3ax had a positive influence on SDSS and mixograph parameters. Of all the prolamins, those that have the B-LMW-GS composition aaa (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d gave the best semolina quality. By contrast, semolina quality is poor when this same composition is associated with the Glu-A1c and Glu-B1e and even poorer when associated with the Glu-A1c and Glu-B1f. In addition, the cultivars with B-LMW-GS allelic composition aab (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d, gave high quality, whereas when associated with the Glu-A1c and Glu-B1e or with Glu-A1o and Glu-B1f, the quality was very poor.  相似文献   

7.
为给我国优质小麦品种的选育和改良提供科学依据,应用SDS-PAGE方法对我国235份推广品种和高代品系的HMW-GS和LMW-GS组成与分布进行了分析。结果表明,HMW-GS和LMW-GS分别具有39和40种带型组合;5个位点共发现34个等位基因。Glu-A1、Glu-B1和Glu-D1分别有3、8和6个变异位点;亚基1、Null、7+9、5+10和2+12是主要的HMW-GS类型,频率分别为46.2%、46.2%、44.5%、47.0%和48.3%。Glu-A3和Glu-B3位点(本文不涉及Glu-D3)分别具有6和11个变异位点。Glu-A3c、Glu-A3d、Glu-B3e和Glu-B3j是主要的LMW-GS类型,频率分别为55.1%、21.6%、28%和28.8%。本研究还发现,在品种Z75和绵阳96-319的Glu-D1位点上,亚基组合形式为5+12;在品种周92034的Glu-D1位点,亚基组合形式为2+10。虽然这两种组合形式在本研究中出现的频率很低,但这两种亚基组合在以前的研究中很少出现。  相似文献   

8.
The bread wheat elasticity, which is very important for bread-making quality, is largely determined by the composition of high-molecular-weight glutenin subunits (HMW-GS). The HMW-GS encoded by Glu-B1 loci are highly polymorphic and the combinations 17+18 and 14+15 are good for bread making. Thus it is very important to identify the alleles at Glu-B1 loci for wheat quality improvement. In this study, the five common HMW-GS types encoded by Glu-B1x locus carried by 18 Chinese bread wheat cultivars (or lines) were analyzed by SDS-PAGE. Two pairs of PCR primers which could distinguish the Glu-Blx alleles of the five common HMW-GS types were designed based on the Glu-B1x gene sequences (Reddy and Appels, 1993; Genbank accession: X13927; Genbank accession:AY367771). 22 recombinant inbred lines (RILs) derived from Jing711 (contains 17 subunit on Glu-B1x) and Pm97034 (contains 14 subunit on Glu-B1x) were used to validate the accuracy of the primers, which showed that the two specific markers could be used together to distinguish alleles at Glu-B1x locus and accelerate wheat quality breeding by marker assisted selection.  相似文献   

9.
为全面了解宁夏引黄灌区冬小麦品质概况,为冬小麦品质改良和粮食生产提供理论依据。选用冬小麦主栽品种、亲本材料和高代品系30份。用SDS-PAGE分析了其中18份材料的HMW—GS、LMW—GS组成和1BL/1RS易位系分布状况。并对23个冬小麦品种的营养与加工品质进行了研究。结果表明,2#、7+9、2+12、Glu-A3a、Glu-A3c、Glu-B3h和Glu—B3j在宁夏引黄灌区冬小麦中分布较广,1BL/1RS易位系分布相当普遍。分布频率为27.8%。参试品种的籽粒硬度、面粉PPO活性、SDS沉淀值、形成时间、稳定时间和评价值的变异范围较大,变异系数分别为25.37%、33.68%、21.42%、26.58%、43.95%和29.31%。多数冬小麦品种(系)的千粒重、出粉率和湿面筋含量低于对照宁春4号。而蛋白质含量、SDS沉淀值、吸水率和稳定时间优于宁春4号。供试品种(系)中。HMW-GS品质评分、籽粒硬度、蛋白质含量、SDS沉淀值均较高,并且不含1BL/1RS易位系的有烟优361、济麦20、鲁875067和923—9等,可用于宁夏引黄灌区冬麦品质改良。  相似文献   

10.
The F4 progenies of four durum wheat crosses were used to determine the effects of different prolamin alleles on quality properties evaluated by the SDS sedimentation, mixograph, micro-alveograph and vitreousness tests and by protein content. Allelic compositions of the gliadins (Gli-B1 and Gli-2 loci) and the glutenins (Glu-1, Glu-3 and Glu-B2 loci) were determined. Alleles at the Glu-B3 locus showed a strong influence on quality measured by SDSS, mixograph and alveograph tests. Significant interactions between Glu-B3 and other glutenin loci were also detected. Prolamin composition explained more than 30% of the variation in SDSS, mixograph MT and alveograph W. The mixograph parameter BDR, and alveograph P and L parameters were the most erratic with between 8 and 76% of variation explained by prolamin composition. In general, no significant associations of prolamins with vitreousness or protein content were found. A significant correlation was detected between SDSS, MT and W. These results together with those from previous studies have important implications for wheat breeders since selection based on good alleles at Glu-B3 (a, c, j) together with favourable alleles at other loci such as Glu-A1 (subunit 1), Glu-A3 (a, c, d, h), Glu-B2 (a,b) and Gli-B1 (ω-35) could improve durum wheat quality.  相似文献   

11.
Both genetic and environmental factors influence the types and amounts of wheat proteins that link together to form polymers essential for flour quality. To understand how plant growth conditions might influence gluten polymer formation, protein fractions containing small and large polymers were separated from flour from the US wheat Butte 86 grown in the absence or presence of post-anthesis fertilizer. Proteins in the polymer fractions were analyzed by quantitative two-dimensional gel electrophoresis (2-DE). The ratio of high molecular weight glutenin subunits (HMW-GS) to low molecular weight glutenin subunits (LMW-GS) increased in both fractions in response to fertilizer, due in part to small increases in the proportions of individual HMW-GS. There were also changes within the LMW-GS. In particular, omega and alpha chain terminators increased in proportion in both polymer fractions, but changes were more pronounced in the large polymer fractions. Serpins also increased in both polymer fractions. Additionally, the study revealed differences in the proportions of traditional LMW-GS in small and large polymer fractions. LMW-s type proteins were more abundant in the large polymers while LMW-i type proteins were more prevalent in the small polymers, suggesting that these proteins may play different roles in the gluten polymer.  相似文献   

12.
The low molecular weight glutenin subunits (LMW-GS) are wheat storage proteins participating to the formation of glutenin polymers that, along with the other gluten proteins, allow the accumulation of a large quantity of protein in the endosperm tissue. The size and composition of the glutenin polymers are directly related to gluten visco-elastic properties. In particular, LMW-GS composition is the factor most influencing durum wheat quality.  相似文献   

13.
Genetic variability for endosperm storage proteins was analysed in 119 Argentinean grown bread wheat cultivars. For the HMW-GS, three, six and two alleles were observed at the Glu-A1, Glu-B1 and Glu-D1 loci, respectively, in 17 allelic combinations. The majority of these combinations were considered to be associated with good quality. For the LMW-GS, eight, seven and four alleles were provisionally observed at the Glu-A3, Glu-B3 and Glu-D3 loci, respectively, in 51 allelic combinations. Regarding quality, the alleles present at Glu-D3 were mainly those previously shown to be associated with good quality, whereas at Glu-A3 and Glu-B3, some alleles previously associated with poor quality were present at high frequency. Relatively few cultivars carried combinations for all the loci studied that would be expected to be associated with high quality. The mean genetic variation index (H) observed for the glutenin loci (0.589) was similar to values observed in other collections. Unweighted pair-group method using arithmetic averages (UPGMA) of the six loci plus the Chinese Spring-Cheyenne CSS–CNN difference showed that the 119 cultivars fell into 93 distinct combinations. For complete discrimination between all cultivars they would have to be analysed for additional loci. There remains scope for varietal quality improvement within this germplasm pool.  相似文献   

14.
The variations of the amounts of individual high molecular weight glutenin subunits (HMW-GS), of the ratios HMW-GSy to HMW-GSx and HMW-GS to low molecular weight glutenin subunits (LMW-GS) and of protein content were evaluated for eight durum wheat cultivars in two regions using four fertilizer combinations during two successive years. All measured parameters showed significant variation with genotypes (G), environments (E) and fertilizers (F). The interaction E × G × F was highly significant for glutenin amount variation. Amongst cultivars possessing HMW-GS 20, landraces seem to better value the N-fertilizer use for the accumulation of HMW-GSy than high yielding cultivars. Both HMW-GSy to HMW-GSx and HMW-GS to LMW-GS ratios were found to be positively correlated (p < 0.05) with total protein content.  相似文献   

15.
Previously we reported that the SDS insoluble gel-layer: the Glutenin Macro Polymer (GMP) can be considered as a gel consisting of protein particles. These glutenin particles have a size of about 10−1–102 μm and consist of HMW-GS and LMW-GS only. In GMP isolates from flour, the particles are spherical. In isolates from dough, glutenin particles have lost this shape. This seems relevant, since mixing disrupts the particles and the mixing energy required for dough development correlated with the glutenin particle size in flour. The question studied in this paper is how changes at a glutenin particle level affected the subsequent process of gluten network formation during dough rest and if this could be used to explain resulting dough rheological properties. To this end, we studied how various mixing regimes affected the dough properties during and after resting (elasticity). We cannot fully explain the differences in the final dough properties observed using parameters such as the quantity of GMP in flour, the quantity of re-assembled GMP in dough and the size of re-assembled glutenin particles. However, other parameters were found to be important: (1) the Huggins constant K′ reflecting the tendency of glutenin particles to interact at level II of the Hyperaggregation model; (2) the composition of glutenin particles affecting the potential to form smaller or larger particles and (3) for over-mixed dough, covalent re-polymerisation at the so-called level I of hyperaggregation. Using these parameters we can better explain dough viscoelasticity after resting.  相似文献   

16.
Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program, we developed a set of nine near isogenic lines (NILs) including different Glu-A3/Gli-A1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu-3/Gli-1 allele combinations to improve breadmaking quality is discussed.  相似文献   

17.
To investigate the impact of the 1BL.1RS translocation on dough strength and to understand how 1BL.1RS genotypes may overcome the loss of Glu-B3 and Gli-B1, proteomic profiles of 16 doubled haploid (DH) lines of similar glutenin composition but of different strength, as measured by Chopin's alveograph, were compared. The results showed that 32 spots, mainly prolamins, were differentially expressed and that five others were specific to high-strength DH lines. The identification and quantification of the prolamin fractions on the two-dimensional (2D) electrophoresis gels demonstrated that the high-molecular weight glutenin sub-unit (HMW-GS) were up-regulated by 25% in 1BL.1RS DH lines, even though the corresponding genes were not located on the missing 1BS chromosome. The γ-gliadins were also up-regulated (by 36%) in such lines to counterbalance, to some extent, the loss of LMW-GS of Glu-B3. The polymeric prolamin fractions also accumulated in high-tenacity lines and decreased in high-extensibility lines confirming the role of the inter-chain disulfide bonds in resistance to deformation. In contrast, the monomeric fraction of α-gliadin favored extensibility and decreased tenacity by increasing the accumulation (+12%) of α-gliadins in high-extensibility lines; the Gli-A1 allele of the parent Toronit was found to be more abundant when compared to the Gli-A1 allele of parent 211.12014.  相似文献   

18.
Using a unique set of deletion lines, (Olympic×Gabo, varying in high molecular weight glutenin subunit (HMW-GS) composition, but with the same genetic background) it was shown that the presence of glutenin particles in glutenin macropolymer (GMP) is directly related to the presence of certain HMW-GS. In the absence of HMW-GS only a small amount of insoluble glutenin protein (GMP) could be recovered from the flour that contained only LMW-GS. No particles were observed in this fraction. When one subunit (HMW-GS Glu-Ax1) was present some particles could be observed, but when two or more HMW-GS were present particles could be clearly identified. The amount of GMP increased with the increasing number of HMW-GS. All particles had the same LMW-GS composition irrespective of HMW-GS-composition. Since the relative proportion of LMW-GS in GMP was dependent on the number of HMW-GS, we postulate that LMW-GS become part of GMP through disulfide cross-linking with HMW-GS. GMP wet weight is correlated with the average HMW density of the glutenin particle. These data were combined with previously published technological data from the same set of wheats. Significant statistical relationships were observed between optimal mixing time and glutenin particle size and between thimble-loaf height and GMP content. Taken together, these studies suggest that glutenin HMW-GS composition affects flour technological properties through glutenin particle size.  相似文献   

19.
The high and low Mr glutenin subunit compositions (controlled by the Glu-1 loci and the Glu-B3 locus, respectively) and the bread-making quality characteristics of 26 durum wheat (Triticum turgidum) genotypes were determined. The relationships between quality parameters and Glu-B1 and Glu-B3 controlled glutenin subunit composition were also investigated. The Glu-A1-controlled null allele was present in all the genotypes. High Mr subunits 20, 6 + 8 and 7 + 8 occurred in similar proportions in the cultivars analysed. The Glu-B3 low Mr allelic variants, LMW-1 and LMW-2, were both represented, with LMW-1 being present in lower proportion. Flour protein, SDS-sedimentation volume, dough strength (Alveograph W value), dough mixing time and bread loaf volume varied among the genotypes. Most samples had high Alveograph tenacity/extensibility (P/G) ratios, typical of tenacious gluten character. SDS-sedimentation volume, dough strength, dough mixing time and bread loaf volume were all interrelated. An association with flour protein content was observed only for mixing time, while the Alveograph tenacity/extensibility ratio was not correlated with the other parameters. Comparisons within the Glu-B1 and Glu-B3 loci indicated that the high Mr subunit 7 + 8 and the low Mr subunit LMW-2 had significantly greater beneficial effects on gluten strength and bread-making quality than the high Mr subunits 6 + 8 or 20 and the low Mr subunit LMW-1, respectively. High Mr subunit 6 + 8 had greater beneficial effects on quality than subunit 20.  相似文献   

20.
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. The LMW-GSs are encoded by multi-gene families at the Glu-A3, Glu-B3 and Glu-D3 loci, with more than 15 genes present in most bread wheat varieties. However, the genic profile associated with different alleles has not been clearly defined. Here, the LMW-GSs in a set of standard varieties were analyzed using molecular markers. In most cases, each Glu-3 allele was represented by a specific haplotype; however, some alleles were undistinguishable. The Glu-A3e and Glu-A3g alleles showed an identical marker haplotype, as did the alleles Glu-B3c and Glu-B3d, and Glu-B3f and Glu-B3ab. In contrast, two haplotypes among varieties designated Glu-D3c were differentiated. The marker profiles present at the Glu-D3 locus exhibited less variation compared to the genes at the Glu-A3 and Glu-B3 loci. Results show the potential of the LMW-GS gene marker system in the characterization of the LMW-GS alleles present in specific bread wheat varieties, and its reconciliation with protein-based nomenclature. This approach will advance the understanding of the contribution of each of the LMW-GS gene alleles in the control of the end-use quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号