共查询到16条相似文献,搜索用时 102 毫秒
1.
2.
栉孔扇贝神经节一氧化氮合酶的组织化学和免疫组化定位 总被引:5,自引:1,他引:5
采用组织化学和免疫组化技术对栉孔扇贝(Chlamys farreri)神经节内的一氧化氮合酶(NOS)进行定位研究。组织化学显示,存在NOS的部位如下:脑神经节内纵行的神经纤维和表层的少量小细胞;足神经节表层的大量小细胞,中央大量水平分布的神经纤维;脏神经节中部大量水平分布的神经纤维,前叶内大量小细胞和神经纤维,后叶内少量小细胞和许多环行神经纤维,侧叶内大量似放射状分布的神经纤维;脑足和脑脏神经索内的神经纤维。免疫组化定位表明,神经型一氧化氮合酶(nNOS)和诱导型一氧化氮合酶(iNOS)在整个神经系统内均呈阴性;足神经节和脏神经节内有少量神经细胞呈内皮型一氧化氮合酶(eNOS)强阳性;各神经节和神经索内的部分小细胞和神经纤维呈eNOS弱阳性。栉孔扇贝进化上为较低等的贝类,NOS阳性神经细胞应主要分布于外周器官组织内。神经系统内大量的NOS可在其神经传导和免疫调节等方面发挥重要的作用。 相似文献
3.
副溶血弧菌对斜带石斑鱼血清中一氧化氮合酶活力的影响 总被引:5,自引:0,他引:5
为了研究感染副溶血弧菌对斜带石斑鱼体内一氧化氮合酶活力的影响 ,分别对斜带石斑鱼腹腔注射浓度为 5× 10 8cfu/ml、5× 10 7cfu/ml、5× 10 6cfu/ml的副溶血弧菌悬浮液 ,在注射后 2 4h、4 8h、72h、12 0h和 192h尾部取血 ,测定其血清中NOS活力的变化情况。结果表明 ,注射副溶血弧菌后斜带石斑鱼血清中NOS活力显著高于对照组 ,并且高浓度组NOS活力显著高于低浓度组 ,证明注射副溶血弧菌可以诱导斜带石斑鱼体内NOS活力的升高。 相似文献
4.
杂色鲍血细胞中一氧化氮合酶活性的鉴别 总被引:2,自引:0,他引:2
一氧化氮合酶(Nitric oxide synthase,NOS)是催化L-精氨酸与O_2产生一氧化氮(Nitric ox- ide,NO)的一种合成酶,它广泛存在于生物体的各个器官和组织中,其活力大小可通过测定NO合成量的多少来决定。NO作为一种新型生物信使分子、效应分子和免疫调节分子,参与机体多种重要的生理病理活动,可以通过非特异性地杀伤细菌、真菌、寄生虫及病毒等。增强机体的非特异性免疫。本文采用生物化学法,以副溶血弧菌和脂多糖为刺激因子.并采用硝酸盐还原酶法测定了NO的水平,对杂色鲍血细胞中的NOS活性进行了初步鉴别。结果表明,加入副溶血弧菌组或LPS组NO水平显著高于对照组(P<0.05),孵育4h后分别为对照组的1.84和1.92倍,孵育8h后分别为对照组的2.38和3.05倍,而且这一反应能被NOS抑制剂L-NAME所阻断,说明杂色鲍血细胞中存在NOS活性。 相似文献
5.
6.
一氧化氮合酶(nitricoxidesynthase,NOS)专一性催化L-精氨酸转化为L-瓜氨酸和一氧化氮(nitricoxide,NO),产物NO是一种重要的生物信使分子,对其功能和代谢的研究越来越受人们的重视[1]。国际上,鱼类NOS的研究还刚起步,已有研究者在鱼类中检测到NOS的存在[2-5]。虹鳟[6]、金鱼[4]、大西洋鲑[7]和沟鲶[8]的诱导型NOS(iNOS)和神经型NOS(nNOS)的部分序列已鉴定。国内对哺乳动物的NOS也进行了研究[9-11],尚未见关于鱼类NOS方面的研究报道。JOURNALOFFISHERIESOFCHINA Vol.27,No.4 斜带石斑鱼(Epin… 相似文献
7.
8.
9.
水产动物本身不能合成类胡萝卜素,必须从食物中摄取。据专家研究结果表明,水产动物类胡萝卜素的生理功能主要表现在以下几个方面: 相似文献
10.
11.
性选择作为生物进化的原动力,在物种形成和进化过程中具有重要作用,也是动物行为学的研究热点之一。目前,水生生物中性选择相关的研究逐渐增多。水生生物复杂的性选择行为,不仅体现在交配前选择,还体现在配子水平上的选择,同时,鱼类还有性角色反转等现象。性选择依据一定的内在生理生化机制发生,相关研究显示,性选择行为与基因决定的遗传因素和环境等非遗传因素有关。这些非遗传因素包括了雌雄个体所处的时间和空间因素、人类活动和其它诸如捕食者和“偷情者”等生物因素等等。水生生物的性选择研究侧重点集中在鱼类上,还有待更多的研究发现来揭示水生生物复杂的性选择行为及其机制。 相似文献
12.
13.
通过硝基蓝四唑(NBT)还原法和血细胞形态法两种一氧化氮合成酶的鉴定方法,以日本对虾(Penaeus japonicus)作为研究对象,对日本对虾血细胞中的一氧化氮合成酶进行初步鉴定,并优化硝基蓝四唑(NBT)还原法测定对虾血细胞中一氧化氮合成酶的实验条件.结果显示,当L-精氨酸浓度为2.5 mmol/L,脂多糖(LPS)质量浓度为100 μg/mL,Ca2 浓度为2.5 mmol/L时,NBT法测定一氧化氮合成酶活力的结果最佳.同时,还建立了两种针对一氧化氮合成酶活力的分析方法-L-瓜氨酸分析法和亚硝酸盐分析法,并对其测定条件进行了优化.结果表明,对虾血细胞在4 ℃下与L-精氨酸和LPS孵育8 h后测定的结果最为理想.利用这4种方法能够有效地鉴定和分析对虾血细胞中的一氧化氮合成酶,这为深入了解一氧化氮合成酶在对虾先天性免疫中的地位及其在对虾抗病力中的作用提供了理论依据. 相似文献
14.
Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), an important biological messenger from L-arginine. There are considerable evidence showing the expression of NOS in mammalian tissues. Information on distribution of NOS activities in various organs and tissues of fish is rare. Non-functional NOS activities were documented in fish semi-quantitatively either by an indirect nicotine-adenine-dinucleotide-phosphate diaphorase (NADPH-d) activity histochemical staining method or by an immunohistochemical method using a cross-reacting antibody to brain NOS. Report on the functional levels of NOS activities in fish is lacking. This report represent the first attempt to document the functional NOS levels in various fish organs and tissues. Constitutive NOS (cNOS) activities in various organs of big-head carp (Aristichthys nobilis) was measured by a chemiluminescence method with a detection limit as low as 10 mol of NO produced. It was found that constitutive NOS activity was highest in the brain, followed by the intestine, stomach, retina, olfactory lobe, swim bladder, skeletal muscle, heart, kidney, ovary and liver. NOS activity could not be detected in the gill filaments. Omission of NADPH in the reaction mixture caused a 57–100% decrease in cNOS activities. However, omission of arginine in the mixture only caused a 56–87% drop in cNOS activities. When compared with cNOS activities documented from other species, a similar pattern of cNOS activities in the various organs and tissues of big-head carp could be seen. 相似文献
15.
16.
S. CHATZIFOTIS F. KOKOU K. AMPATZIS I.E. PAPADAKIS P. DIVANACH C.R. DERMON 《Aquaculture Nutrition》2008,14(5):405-415
This study aims at examining the effect of caffeine administration on growth, feed efficiency, and consumption of sea bream (Sparus aurata), reared in winter temperatures. Moreover, it is questioned whether caffeine has a central action in the brain and its effects are partly mediated via central brain mechanisms. For this, we studied the influences of caffeine treatment on the cerebral pattern of the cholinergic neurotransmission and the novel neuromodulator nitric oxide (NO), by means of acetyl‐cholinesterase (AchE) and nitric oxide synthase (NOS) histochemistry. Five different diets containing 0.0, 0.1, 1.0, 2.0 and 5.0 g caffeine kg?1 of diet were administrated to five groups of fish. Caffeine adversely affected sea‐bream growth at a concentration higher than 1 g kg?1 diet and increased feed conversion ratio in the treatments of 2 and 5 g kg?1 (P < 0.05). The daily consumption of feeds was similar to all groups, indicating that caffeine did not influence diet palatability. AChE‐ and NADPH‐diaphorase histochemistry showed densely labeled cells and fibers mainly in dorsal telencephalon, preoptic, pretectal, hypothalamic areas, optic tectum, reticular formation, cerebellum and motor nuclei. When compared with matched caffeine‐treated animals, no differences in the histochemical pattern and cell densities of cerebral AChE and NADPH‐diaphorase were found. 相似文献