首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
人工林杨树木材密度变异规律的研究   总被引:4,自引:0,他引:4  
以生长在3种滩地类型下3个无性系杨树为研究对象,用微密度的测定方法对人工林杨树木材密度径向和纵向变异规律进行了研究。结果表明,3个滩地类型间的杨树木材密度差异不显著,而不同无性系间和不同高度间木材密度差异显著。3个杨树无性系株内木材密度的径向变异有3种模式,即由髓心向外木材密度逐渐增加,由髓心向外木材密度逐渐递减和由髓心向外木材密度先降低,到一定年龄后再增加,但以由髓心向外木材密度逐渐递减为主要模式。3个杨树无性系株内木材微密度的纵向变异规律为自基部沿树干向上逐渐增大,到了最大值之后,再向上又略有减小。  相似文献   

2.
国内杨树培育、木材性质及其加工利用研究进展   总被引:1,自引:0,他引:1  
概述了国内杨树培育,木材解剖、化学和物理力学性质及加工利用等方面的主要研究成果,分析了杨树杂交育种、定向培育、木材性质与加工利用的研究现状与不足,并对杨树木材研究及加工利用进行了展望,以期为杨树木材资源的合理利用提供借鉴。  相似文献   

3.
研究了人工林与天然林红松木材力学性质在幼龄材与成熟材中的差异。所有力学性质在红讼幼龄材与成熟材中反映的基本趋势是:天然林红松力学性质高于人工林红松。其中,红松幼龄材的抗弯强度、抗弯弹性模量、顺纹抗压强度和冲击韧性4项指标,天然林红松与人工林红松的差异达0.01水平显著,其次弦切面硬度和弦向横纹抗压强度差异达0.05水平显著。红松成熟材的绝大多数力学性能指标天然林红松与人工林红松的差异也达到0.01水平显著,并且天然林红松力学性质高于人工林红松的基本趋势在红松成熟材中表现得更为明显。  相似文献   

4.
滩地淹水胁迫对杨树生长与木材显微结构的影响   总被引:7,自引:1,他引:7  
对5种不同淹水时间类型滩地1~10年生杨树单株材积生长动态进行了分析.结果表明。不同类型之间单株材积生长量均存在显著差异.且随着林龄增长,其差异逐步减小;不同淹水胁迫下,当年年轮宽度、纤维细胞数量、木材基本密度均存在显著差异,纤维长度和宽度差异不显著,杨树年轮宽度与径向纤维细胞数、导管数、径向纤维比量呈正相关;随淹水胁迫程度加深,当年形成层细胞分裂受到了显著抑制,纤维细胞以及导管数量减少,林木径向生长量下降.径向导管比量提高,纤维比量下降,细胞壁腔比减小,木材密度明显降低.对5种淹水类型滩地的林木生长进行了系统聚类,合并划分为4种生长类型,对其中3种常规造林宜林类型杨树生长潜力进行了预测。  相似文献   

5.
不同栽植密度对意杨人工林木材性质的影响   总被引:7,自引:0,他引:7  
以长江滩地 3种栽植密度 (株行距分别为 3m× 4 m,4 m× 5m,5m× 6m)下的 3个品系速生人工林杨树木材 [欧美杨无性系 72杨 ( Populus× euramericana cv. -72 /58) ,美洲黑杨无性系 63杨( P.deltoidescv. -63/51 )和 69杨 ( P.deltoidescv. -69/55) ,以下简称 72杨、 63杨、 69杨 ]为对象 ,探讨不同栽植密度对杨树人工林木材性质的影响。结果表明 :( 1 )同一无性系在不同栽植密度下以及相同栽植密度下不同无性系杨树纤维形态特征、微纤丝角、组织比量值都有差异 ,方差分析结果表明 :除 63杨和 69杨胞壁厚度、壁腔比、柔性系数和 72杨微纤丝角、木射线比量在 3种栽植密度下差异显著外 ,其余性状差异不显著 ,说明林分初植密度对多数解剖性质无显著影响。 ( 2 )不同品系杨树在不同栽植密度下主要解剖特征的径向变异趋势基本相同 ,但变异幅度随不同栽植密度、不同品系和解剖特征而不同。其中 ,壁腔比、微纤丝角、导管比量、木射线比量随栽植密度变化变幅最大 ,而纤维长度、纤维比量变幅较小 ,但所有解剖特征的径向变异曲线在 6年左右都有一个明显的过渡点。 ( 3)栽植密度对 72、 63、 69杨木材物理力学性质的影响因材性指标的不同而不同 ,总体来说 ,栽植密度越大 ,基本密度、抗弯弹性模量和抗弯强度越小 ,干  相似文献   

6.
池杉木材解剖性质和物理性质及其变异的研究   总被引:3,自引:0,他引:3  
通过对池杉木材解剖性质、物理性质的研究,结果表明:池杉木材管胞长度2.266mm,管胞宽度35.13μm,单壁厚7.18μm,长宽比68.52,壁腔比0.767,柔性系数0.492,次生壁S2层微纤丝角13.08°,木材基本密度0.3444g/cm3,20年生平均年轮宽度5.16mm,晚材率10.11%。自髓心向外,管胞长度、宽度、长度比、柔性系数经向变异呈递增趋势,基本密度开始减小,约11年后呈上升趋势。池杉可以作为长江中下游滩地和低丘陵地造林优良树种,产出木材可作为造纸原料。  相似文献   

7.
3种人工培育木材化学成分与纤维形态的研究   总被引:7,自引:0,他引:7  
对杨树351,黑荆树和喜树木材的化学成分与纤维形态进行了测定及分析,旨在为其用于制造人造板及制浆提供必要的基础数据.研究结果表明:3种木材综纤维素含量高,纤维形态好,纤维长度大,长宽比高,壁腔比小于l;分析认为3种木材均是生产纸浆、纤维板、刨花板的优质原料.  相似文献   

8.
【目的】比较5个杨树无性系木材的抗腐朽菌能力,并以腐朽后各阶段木材材色的变化为依据,定量预判木材腐朽程度,为无损检测技术在木材保护中的应用提供依据。【方法】以欧美杨107杨(以下简称107)、中汉22杨(以下简称H22)、皖林1号杨(以下简称Z3)、B3和Z9 5个无性系杨树木材为研究对象,就其接种白腐菌后的质量损失率、不同时段木材基本密度及材色的变化为评判指标,比较各无性系杨树木材抗腐朽菌的能力,并通过材色变化来预判木材腐朽程度。【结果】在白腐菌侵染60d后,各无性系杨树木材的质量损失率均大于45%,腐朽等级均属于第Ⅳ级,是不耐腐树种,并且杨树木材极易受心腐。腐朽后杨树木材的基本密度均有不同程度的下降,在腐朽40d时,107杨、H22、Z3、B3和Z9分别较正常材下降4.81%,9.88%,2.24%,14.21%和1.60%。腐朽后,材色变化曲线与木材腐朽过程相对应,可以用来定性判断木材腐朽程度;杨树心材由正常到腐朽,材色变化的临界值是:明度63~66,色调5~15,色饱和度17~29;杨树边材相应的临界值是:明度62~69,色调6~14,色饱和度17~30。【结论】受白腐菌侵染120d后,5个杨树无性系的质量损失率依次为H22B3Z9107Z3,说明H22在这5个无性系中最不耐腐,Z3相对而言耐腐性较强。木材腐朽后,可以参考明度、色调和色饱和度3个材色指标预测杨树无性系的腐朽程度。  相似文献   

9.
  目的  分析杨树Populus无性系间纤维性状差异及与生长性状的相关性,为杨树无性系优质材定向培育与选择利用提供基础信息和指导。  方法  选择树干通直,生长量大的7个杨树无性系XL-80、XL-86、XL-83、XL-58、XL-75、ZH-17、I-69(对照)为材料,对纤维长、纤维宽、纤维长宽比及纤维素质量分数、单株纤维素等性状进行了研究,利用主成分综合得分法评价了各无性系纤维性状指标。  结果  7个杨树无性系木材纤维长为0.95~1.12 mm,均达到了国际木材解剖学会规定的中级纤维长(0.91~1.60 mm)的标准;纤维长宽比为49.09~54.62,超出造纸所需纤维长宽比(30)的63.67%~82.00%;纤维素质量分数为53.06%~59.66%,均超出造纸纤维素质量分数的基本要求(40%)。纤维宽与树高、胸径及生物量呈正相关但不显著(P>0.05),纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量均呈负相关,且均不显著(P>0.05)。通过主成分综合得分法评选出5个杨树优良无性系,分别为XL-80、XL-58、XL-86、ZH-17、XL-83。  结论  筛选的5个优良无性系综合了各性状的优良特性,能够最大程度地实现物尽其用,达到杨树无性系资源利用的最大化,同时也为杨树多目标育种提供了丰富的遗传资源。表6参24  相似文献   

10.
桢楠木材的物理力学性质   总被引:2,自引:0,他引:2  
对94年生桢楠木材的物理力学性质进行了测定和分析,结果表明,木材基本密度在0.5 g·cm-3以上,60 ~80 a间达到最大值0.54 g·cm-3.40年生的桢楠木材基本密度、顺纹抗压强度、抗弯强度、冲击韧性、端面硬度属中等;随着树木年龄增加,顺纹抗压强度、冲击韧性、抗劈力、顺纹抗剪强度、端面硬度随着树木年龄增大而增加;在80年生时木材冲击韧性属高等,端面硬度很硬.如果兼顾其它指标,在桢楠栽培经营中,木材利用成熟期初步确定60 ~80 a.  相似文献   

11.
【目的】研究5个杨树无性系幼龄材和成熟材的化学成分,为杨树优良无性系的选择和杨树制浆造纸利用提供依据。【方法】选择欧美杨107杨(Populus×euramericana ‘Neva’)、中汉22杨(P.×deltoides cv.‘Zhonghan22’)、皖林1号杨(P.×deltoids cv.‘Wanlin1’)、Z9(P.×deltoids cv.‘Z9’) 和B3(P.×deltoids cv.‘B3’) 5个杨树无性系为研究材料,参照有关国家标准,分别测定其幼龄材和成熟材的化学成分,通过单因素方差分析,比较不同无性系及不同材龄之间的差异性。【结果】综纤维素、纤维素、木质素、苯醇抽提物、10 g/L NaOH抽提物的含量,在所测的5个杨树无性系试样中分别为749.7~830.7,398.1~434.1,177.1~198.0,8.8~14.8和190.2~237.2 g/kg。5个杨树无性系成熟材中的综纤维素和纤维素含量均高于幼龄材,木质素含量均低于幼龄材;苯醇抽提物含量除皖林1号杨外,其余无性系均表现为成熟材大于幼龄材;10 g/L NaOH抽提物含量在不同无性系之间差异较大。幼龄材与成熟材之间,综纤维素含量差异极显著(P<0.01),苯醇抽提物含量差异显著(P<0.05),其余化学成分差异均不显著;不同无性系之间,综纤维素含量和10 g/L NaOH抽提物含量在P=0.001水平上差异显著,木质素含量在P=0.01水平上差异显著,其余化学成分差异均不显著。【结论】从化学成分来看,5个杨树无性系均是制浆造纸的优良原料。由于无性系之间化学成分差异显著,幼龄材与成熟材之间化学成分也存在差异,因此建议在选择制浆造纸原料时,应优先考虑无性系的影响。  相似文献   

12.
【目的】研究5个杨树无性系幼龄材和成熟材的化学成分,为杨树优良无性系的选择和杨树制浆造纸利用提供依据。【方法】选择欧美杨107杨(Populus×euramericana‘Neva’)、中汉22杨(P.×deltoidescv.‘Zhonghan-22’)、皖林1号杨(P.×deltoidscv.‘Wanlin-1’)、Z9(P.×deltoidscv.‘Z9’)和B3(P.×deltoidscv.‘B3’)5个杨树无性系为研究材料,参照有关国家标准,分别测定其幼龄材和成熟材的化学成分,通过单因素方差分析,比较不同无性系及不同材龄之间的差异性。【结果】综纤维素、纤维素、木质素、苯醇抽提物、10 g/L NaOH抽提物的含量,在所测的5个杨树无性系试样中分别为749.7~830.7,398.1~434.1,177.1~198.0,8.8~14.8和190.2~237.2 g/kg。5个杨树无性系成熟材中的综纤维素和纤维素含量均高于幼龄材,木质素含量均低于幼龄材;苯醇抽提物含量除皖林1号杨外,其余无性系均表现为成熟材大于幼龄材;10 g/L NaOH抽提物含量在不同无性系之间差异较大。幼龄材与成熟材之间,综纤维素含量差异极显著(P<0.01),苯醇抽提物含量差异显著(P<0.05),其余化学成分差异均不显著;不同无性系之间,综纤维素含量和10 g/L NaOH抽提物含量在P=0.001水平上差异显著,木质素含量在P=0.01水平上差异显著,其余化学成分差异均不显著。【结论】从化学成分来看,5个杨树无性系均是制浆造纸的优良原料。由于无性系之间化学成分差异显著,幼龄材与成熟材之间化学成分也存在差异,因此建议在选择制浆造纸原料时,应优先考虑无性系的影响。  相似文献   

13.
【目的】通过优化葡萄糖/三聚氰胺/尿素树脂(MUG)的葡萄糖配比及MUG树脂与硅酸钠的配比,减少二氧化硅及葡萄糖羟基残留,以改善改性材吸湿、尺寸不稳定等问题。【方法】设置葡萄糖、三聚氰胺、尿素物质的量比为m∶1∶4(m分别为2,4,6,8,10和12),根据红外解析树脂预聚程度,测定树脂黏度、固含量和水溶倍数等性能,筛选出优化MUG树脂的葡萄糖配比;将优化制备的MUG树脂与硅酸钠复配得5种改性剂:G5S25、G10S20、G15S15、G20S10、G25S5G代表MUG树脂,S代表硅酸钠,下标数值代表其在改性剂中的质量分数),通过测定改性材黏度、pH值和改性材的密度、增重率、吸水率、尺寸稳定性、力学性能,优化MUG树脂与硅酸钠的复合配比。【结果】①随着葡萄糖增加,MUG树脂的黏度、固含量增大,水溶性好,储存更稳定。②红外分析表明,随着葡萄糖增加,MUG树脂在1 667 cm-1处的酰胺羰基峰、在1 630 cm-1处的酰胺N—H键弯曲振动峰均变小,在1 552和1 421 cm-1处的亚氨基树脂特征峰、在770 cm-1处的呋喃环特征峰均增强;当葡萄糖物质的量比增大至8以上时,上述吸收峰强度无明显变化,故葡萄糖物质的量比宜为8。③随着树脂含量增加,MUG树脂/硅酸钠改性剂的黏度增大、pH值降低,G25S5改性剂不稳定、易产生沉淀。④各组改性材中,以G20S10改性材的增重率最大、吸水率最低,径向、弦向、体积湿胀率最低;与素材相比,其密度提高了60.9%,浸水144 h时的吸水率下降35.4%;其径向、弦向、体积抗湿胀率分别为60.81%,34.20%和51.87%,抗弯弹性模量、抗弯强度和顺纹抗压强度均比素材明显提高。【结论】MUG树脂能有效抑制硅酸钠引起的吸湿和皱缩,二者的优化复配比例为质量分数20%树脂和质量分数10%硅酸钠。  相似文献   

14.
通过试验研究,分析室内常规环境条件下承受不同应力水平作用的速生杨木及其氨溶季胺铜(ACQ-D)防腐处理木材的蠕变规律,对试验数据进行拟合分析,得到蠕变变形曲线,建立速生杨木及其ACQ-D防腐改性材的相对蠕变模型,并对不同受荷时间的速生杨木及其ACQ-D防腐改性材的相对蠕变变形进行预测。结果表明,速生杨木及其ACQ-D防腐改性材蠕变变形规律相似,其蠕变变形均随着应力水平和受荷时间的增大而增大;由于ACQ-D不显著改变速生杨木的力学性能,速生杨木及其ACQ-D防腐改性材初始弹性变形接近,低应力水平下蠕变变形也相差不大,但ACQ-D防腐提高了速生杨木的吸湿性,从而导致高应力水平下防腐改性木材较大的相对蠕变变形。  相似文献   

15.
以速生杨木为研究对象,通过木材改性剂对速生材浸渍强化处理,使用X射线衍射仪、扫描电子显微镜、能谱分析仪、傅氏转换红外线光谱分析仪对改性前后的木材进行表征,并分析改性前后木材的物理性能。结果表明:经木材改性后,速生材物理性能显著提高。X射线衍射仪数据表明,木材改性剂使木材结晶度从39.65%降到36.89%,能谱分析仪结果显示:氮(N)氧(0)碳(C)元素在木材内部分布均匀,扫描电子显微镜谱图分析了禾材改性剂在木材管孔中的分布,最后红外光谱图表明改性剂与木材内部集团发生交联反应.并且羟基数目大量减少。图4表1参7  相似文献   

16.
杨木边材变色菌的生物防治   总被引:1,自引:1,他引:0  
用18个来自5种寄主上的具有拮抗作用的细菌菌株,在试验室进行了杨木抗变色(生防)实验,结果证明广玉兰上的M3-2、MJ-2、M5-4,红叶石楠HX1、HX2是潜在的生防菌。  相似文献   

17.
人工林杨树木材纤维形态特征及其变异的研究   总被引:13,自引:0,他引:13  
对人工林杨树木材I-69杨(Populus deltoides cv.I-69/55) 的纤维长度、纤维直径、纤维壁厚、纤维长宽比和壁腔比等纤维形态特征指标进行了系统的测试.结果表明,在径向上,木材纤维长度、纤维宽度、长宽比的变异都是自髓心向外开始逐年增大,到一定年轮达最达值,此后再逐渐减小或保持平稳;而纤维壁厚、壁腔比变化幅度不大.纤维形态各指标的径向变异均要大于轴向变异.  相似文献   

18.
复合硅改性热处理杨木的制备及性能   总被引:1,自引:1,他引:0  
[目的]针对木材树脂改性剂释放甲醛不环保,无机改性材吸湿性高等问题,将廉价易得的硅石粉溶液化,再有机杂化,制得高渗透、环保、防火的水溶性木材复合硅改性剂,通过真空加压浸渍处理和热处理联合改性,可以有效提高木材的物理力学和阻燃等性能.[方法]分别制备硅油复合硅改性剂(SC2)和偶联剂杂化硅改性剂(HS2),对人工林杨木进...  相似文献   

19.
【目的】探究不同固化温度对浸渍杨木力学性能、物理性能和甲醛释放量的影响,为浸渍木的加工与应用提供实践指导和理论依据。【方法】以毛白杨锯材径切板为试材,以不进行任何处理锯材为素材,以常压过热蒸汽为介质,选择120,140,160,180℃的固化温度对脲醛树脂浸渍杨木(浸渍材)进行树脂固化处理。【结果】经过高温固化处理的浸渍杨木力学性能相对于素材有所升高,相对于未经高温固化浸渍材有所降低。与素材相比,浸渍材和120,140,160,180℃固化浸渍材的抗弯强度(MOR)分别升高了49.60%,45.21%,43.40%,37.70,24.95%;弹性模量(MOE)分别升高了107.39%,106.83%,92.40%,85.20%,57.35%;硬度值分别升高了65.71%,59.41%,56.06%,50.98%,44.46%;冲击韧性分别降低了7.03%,10.77%,14.73%,16.40%,21.54%。素材、浸渍材以及120,140,160,180℃固化材的阻湿率分别为0,20.0%,26.0%,29.4%,30.0%,33.3%。随着固化温度的升高,固化浸渍材阻湿率升高,尺寸稳定性提高。未经高温固化浸渍材的甲醛释放量为1.66mg/L,120,140,160,180℃固化浸渍材的甲醛释放量分别为1.09,0.91,0.25,0.16mg/L,经过高温固化处理后浸渍材的甲醛释放量明显降低。【结论】热处理对浸渍木物量力学性能及甲醛释放量有明显影响,建议生产中选用160℃作为脲醛树脂浸渍杨木的固化温度。  相似文献   

20.
不同立地条件下杨树树冠结构与溃疡病的关系   总被引:1,自引:0,他引:1  
调查了不同立地条件下的杨树树冠结构和溃疡病的病情,分析了立地条件对树冠结构的影响以及树冠结构与溃疡病病情的关系.结果表明:树冠表面积(CSA)与土壤类型、土层厚度、腐殖质层厚度均呈极显著正相关;单株总叶面积(TLA)只与土壤类型呈显著正相关;冠幅(W)与土壤类型呈极显著正相关,与腐殖质层厚度呈显著正相关;枝下高(H<,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号