首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basis of low seed set was investigated in a diploid hybrid population with germplasm from the cultivated speciesSolanum tuberosum spp.tuberosum andS. tuberosum ssp.phureja and the wild speciesS. chacoense. Controlled crosses were performed following an incomplete diallel mating design which included the hybrid population and the parental species. Pollen grain germination and pollen tube growth were observed with fluorescence microscopy in 174 intrapopulation and interspecific combinations of genotypes. Fifty percent of the combinations of genotypes within the hybrid population and 46% of those between this population and the parental species were incompatible; overall, 71% of the interspecific combinations of genotypes were compatible when plants of the hybrid population were used as females, vs. 5% when used as males. Although the site of reaction could vary in a given intrapopulation or interspecific cross with the combinations of genotypes, pollen tube inhibition occurred in the first third of the style in 42% of them. Since the gene pool of the hybrid population had been widened with germplasm from other geographic areas and the genotypes ofS. tuberosum ssp.tuberosum, S. chacoense andS. tuberosum ssp.phureja used in this study were not the ones involved in the original crosses, it is concluded that the S-locus is not controlling the incompatibility reaction but rather that a cross-incompatibility system, possibly governed by more than one locus, is acting.  相似文献   

2.
The objectives of this study are to propose a model for explaining the genotypic and environmental variation in above-ground biomass growth via photosynthesis and respiration processes from transplanting to heading for different rice genotypes grown under a wide range of environments, and to identify the physiological traits associated with genotypic difference in the biomass growth based on model analysis. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The crop growth rate observed during the period from transplanting to heading ranged from 3.4 to 19.4 g m−2 d−1 among the genotypes grown at the eight locations. About one-third of the data sets were utilized for model calibration and the remaining sets were used for model validation. An above-ground biomass growth model was developed by integrating processes of single leaf photosynthesis as a function of stomatal conductance and leaf nitrogen content, growth and maintenance respiration and crop development. To rigorously examine the validity of this process model, measured data were input as external variables for leaf area index (LAI) development and leaf nitrogen content per unit leaf area. The model well explained the observed dynamics in above-ground biomass growth (R2 = 0.95*** for validation dataset) of nine rice genotypes grown under a variety of environments in Asia. The model simulation suggested that genotypic difference in the biomass growth was closely related to the difference in the stomatal conductance and leaf nitrogen content, as well as to LAI. This paper proposes the model structure, algorithms and all parameter values contained in the model, and discuss its effectiveness as a component of a more comprehensive model for simulating dynamics of biomass growth, LAI development and nitrogen uptake as a function of genotypic coefficients and environments.  相似文献   

3.
The objective of this study was to characterize sixS. commersonii - S. tuberosum progenies deriving from 5x ? 4x crosses to provide evidence that they can be used in potato breeding. Hybrids analyzed (coded PTH) had a chromosome number between the 4x and the 5x level. In particular, progeny means for chromosome number ranged from 50±0.5 to 54±0.7, with most (70%) genotypes exhibiting a low aneuploid level of 48 to 53 chromosomes. Despite being aneuploid, the hybrids did not generally show phenotypic aberrations or vigor reduction common to aneuploids of other species. Most genotypes resembledS. tuberosum in growth habit, whereas corolla type, eye depth, and stolon length varied between and within progenies. Aneuploid hybrids produced tubers under long-day conditions. However, tuber yields were not as high as expected, probably due to lack of adaptation of theS. commersonii genome to long-day conditions. Although aneuploidy has often been associated with reduced male and female fertility, many 5x ? 4x hybrids were fertile in crosses withS. tuberosum. The average berry set and number of seeds/berry were 33% and 34.7, respectively, following PTH ×S. tuberosum crosses, and 40% and 51.7, respectively, forS. tuberosum × PTH crosses. The useful variation for fertility and tuber traits found in this material is being used for further breeding efforts.  相似文献   

4.
Infection of plants by pathogens is a biotic environmental stress. Barley plants are infected, among others, by Fusarium culmorum—a pathogen affecting seedling, head, root and stem. The infection can result in reduced yield and grain quality. The aim of the study was to compare the reaction of inoculated and non-inoculated barley doubled haploids (DHs) with F. culmorum in various environments. Thirty-four genotypes were inoculated with an isolate of F. culmorum. The experiment was carried out over 6 years. Kernel weight per spike, 1000-kernel weight and percentage of plump kernels were observed in control and inoculated plants. Genotype-by-environment (GE) interaction and its structure with reference to the environments and genotypes were analysed. Additional information about the sensitivity of healthy and infected genotypes to environments was determined by the regression analysis. Statistical computation was made using the SERGEN software. Lines were considered as unstable when their GE interaction was significant at P = 0.05. Unstable genotypes were classified as intensive or extensive according to the results of the regression analysis. It was found that infection with Fusarium decreased the stability of barley lines in different environments. Interaction of unstable infected genotypes with environments, most often, could not be explained by the regression—their response to various environmental conditions appeared to be unpredictable. Selection of lines less susceptible to biotic and abiotic stresses was possible due to comparison of classification of healthy and infected lines, which was made based on their main effects and GE interaction.  相似文献   

5.
Weeds are a major constraint to rice (Oryza spp.) production in West Africa. Superior weed competitive rice genotypes may reduce weed pressure and improve rice productivity. Two upland and two lowland experiments were conducted in southern Benin to examine genotypic variations in weed-suppressive ability and grain yield under weedy conditions, and to identify plant characteristics that could be used as selection criteria for improved weed competitiveness. A total of 19 genotypes, including Oryza sativa and Oryza glaberrima genotypes and interspecific hybrids developed from crossing O. sativa and O. glaberrima, were grown under weed-free and weedy conditions in an upland with supplemental irrigation and in a flooded lowland. In weedy plots, hand weeding was done once or not at all. Mean relative yield loss across all genotypes due to weed competition ranged from almost 0% to 61%. Large genotypic variations in weed biomass and grain yield under weedy conditions were found. Visual growth vigor at 42 and 63 days after sowing (DAS) under weed-free conditions significantly correlated with weed biomass at maturity in both upland and lowland experiments (R2 = 0.26–0.48). Where weed pressure was low to moderate, with mean relative yield loss less than 23%, the multiple regression models using grain yield and plant height at maturity or only grain yield measured under weed-free conditions as independent variables could explain 66–88% of the genotypic variation in grain yield under weedy conditions. At higher weed pressure (mean relative yield loss: 61%), as observed in one of the upland experiments, biomass accumulation of rice at 42 days after sowing was associated with higher grain yield under weedy conditions. Biomass accumulation also significantly correlated with visual growth vigor at the same sampling dates. Therefore, we conclude that grain yield, plant height at maturity and visual growth vigor at 42–63 DAS under weed-free conditions appear to be useful selection criteria for developing superior weed competitive rice genotypes.  相似文献   

6.
Longer-term partial stagnant flooding, particularly when it occurs following transient complete submergence causes severe damage to modern rice varieties. Progress was made in developing varieties tolerant of complete submergence through transfer of the Submergence-1 (SUB1) gene into popular varieties. However, SUB1 may not be effective under partial stagnant flooding (SF), as the new varieties may not elongate and continue growth when fully or partially submerged because of the SUB1-mediated suppression of elongation. We tested a set of rice genotypes, including a pair of near-isogenic lines (NILs), Swarna and Swarna-Sub1, under either SF or SF following complete submergence of 12 d. Swarna-Sub1 had higher survival and yield than Swarna following 12 d of submergence, but survival and grain yield of all lines decreased substantially when SF of 15-30 cm followed complete submergence, with the sensitive lines experiencing greater reductions in growth and yield. This suggests the importance of combining SUB1 with tolerance of SF in areas where both stresses are expected during the season. Swarna and Swarna-Sub1 are more sensitive to long-term partial SF than IR49830 and IR42 because of their short stature, and Swarna-Sub1 showed slightly higher reduction in tillering than did Swarna when subjected to deeper SF alone, possibly because of further inhibition of elongation by SUB1 if induced in submerged tissue. The results suggest that tolerance of these genotypes to SF depends less on SUB1 introgression and more so on the genetic background of the recipient genotype, with better performance of the genotypes that are inherently taller, such as IR42 and IR49830. The SUB1 donor landrace FR13A and its derivative breeding line IR49830 had better survival and relatively less reduction in grain yield under SF following complete submergence and under longer-term partial SF, indicating that these genotypes may have genes other than SUB1 for submergence and SF tolerance. For better adaptation to prolonged SF, SUB1 should be introgressed into genotypes that tolerate partial SF through better tillering ability and taller shoots, because SUB1 may not be effective in shorter genotypes, as it promotes survival of submerged plants by hindering shoot elongation to conserve energy reserves. Varieties combining tolerance of prolonged SF with SUB1 will have broader adaptation in flood-prone areas and greater impacts on yield stability.  相似文献   

7.
Breeding for tolerance to soybean rust is potentially one of the solutions to combating soybean rust; however, very little progress in tolerance breeding has been documented. Fourteen pre-selected genotypes were evaluated in a sprayed versus unsprayed split-plot trial conducted over three seasons for their tolerance to soybean rust. Different assessments of tolerance were compared for their effectiveness in discriminating between genotypes. Conventional methodology using a yield loss % index for assessing tolerance produced results which were poorly correlated with each other over seasons, which likely accounts for the historic lack of breeding success. This study has used the superiority measure (Pi) of Lin and Binns and the ecovalence statistic (Wi) of Wricke in a biplot to identify the most tolerant genotypes. A novel statistic (WiPi) has been generated from this biplot which facilitates the simultaneous selection for general performance and yield stability of genotypes under a range of rust stress conditions.  相似文献   

8.
《Field Crops Research》1988,19(3):183-200
Nine experiments were run at three hot tropical sites (5–12°S, 180–800 m) within Peru to quantify the influence of plant population on soil temperature and growth and yield of the potato.Radiation interception was greatest at the highest plant populations and soil cooling was directly proportional to the amount of crop cover over the soil, but no appreciable effect on the timing of tuber initiation was apparent. More stems per unit land area leading to a higher leaf area index (lai) were primarily responsible for greater interception of radiation at the higher plant populations, although some compensation in stem number per unit land area and in lai at lower populations was evident later in the season.In general, tuber yield increased linearly with increases in planted population over the range studied (2.7–12.5 plants m−2, and in one experiment to 31.7 plants m−2), and was proportional to increases in the amount of intercepted radiation. Tuber yields ranged from 8 to 60 t ha−1 over sites and populations. Vigorous clones with Solanum tuberosum spp. andigena in their genetic background constituted the exceptions to this linear trend, and for these clones yields declined at the highest populations, particularly when the rectangularity of planting vastly deviated from square patterns. Tuber yield of Solanum tuberosum spp. tuberosum and Neotuberosum (S. tuberosum spp. andigena selected for tuberization under long-day conditions) clones did not respond to variations in rectangularity of planting and, probably due to their small stature and early maturity, did not demonstrate signs of intense between-plant competition for tuber yield as measured with the Kira competition density index. In contrast, for clones with Solanum tuberosum ssp. andigena in their genetic background, maximum tuber yield at populations greater than 5.5 plants m−2 was dependent on the rectangularity of planting, and declined as the latter deviated from squareness.Since the proportion of marketable tubers was scarcely affected by the planting densities, plant population of S. tuberosum ssp. tuberosum clones planted in hot climates should be as close as possible without limiting the amount of soil available for hilling-up.  相似文献   

9.
The plant breeding program of the National University of Colombia carried out 10 potato regional trials during 1998 and 1999 to evaluate 15 promising potato clones (Solanum tuberosum ssp.andigena). Genotype by environment interaction was analyzed using Kang’s methodology, which links yield performance and phenotypic stability. A MACRO was implemented using the SAS system to obtain yield-stability indices. Shukla’s variance was estimated by restricted maximum likelihood (REML), which allowed handling unbalanced data for both genotypes and replicates. In addition, a multivariate analysis methodology was developed, based on the yield-stability index. This methodology is useful when tuber yield is categorized by size and quality, which is usual in Colombian potato harvests.  相似文献   

10.
Gibberellins (GAs) are involved in internode elongation and other important processes such as seed germination, flowering, maturation, tuberization, and tuber dormancy. The discovery of GA-deficient mutants enabled further study of the role of these hormones in many plant processes. GA-deficient mutants lack the ability to produce adequate amounts of gibberellin for normal growth, resulting in a rosette type growth and short internodes. Thega 1 mutant allele was introduced into various genetic backgrounds including differentSolanum species and ploidies. Diploid GA-deficient genotypes were obtained by crossing haploidSolanum tuberosum ssp.andigena withSolanum chacoense. The progeny was then bulked and intermated to produce F2 individuals. Tetraploid GA-deficient genotypes were obtained by crossingS. tuberosum ssp.andigena withSolanum sucrense and withSolanum gourlayi. The two resulting progenies were then bulked and intermated. Diploid and tetraploid GA-deficient genotypes were grown on MS media containing different levels of gibberellin (GA3). Plant height and visual observations were made as a way to assess the response of these genotypes to GA3. Concentration of 0.1 µM GA3 and lower failed to restore normal plant height in both diploid and tetraploid genotypes. Normal plant height was restored in most of the GA-deficient genotypes when concentrations between 0.8 and 1.2 µM GA3 were used. We found some important differences between these genotypes: (1) the level of GA3 to restore normal plant height varies among the GA-deficient genotypes, some needed more GA3 than others to grow normally; (2) the time to respond to the presence of GA3 in the media differs between the GA-deficient genotypes, (3) tetraploid genotypes exhibited normal growth and internode length in response to GA3, while diploid genotypes tended to show a rosette-type growth at the apical end. These results suggest thatga 1 mutants can be affected by a series of modifier genes and/or iso-alleles. The importance of variable response to GA among dwarf individuals is two fold: (1) experiments measuring GA response should choose and clonally multiply one genotype to ensure uniform optimal response to GA application; and (2) variation betweenga 1 mutant phenotypes could be used to characterize GA-response modifier genes.  相似文献   

11.
Leaf area index (LAI) is one of the major determinants of crop photosynthesis. The objectives of this study were to clarify the relationship between LAI development and crop growth in diverse rice genotypes grown under widely different climate conditions and to develop a model explaining genotypic and environmental variation in LAI dynamics based on environmental and plant factors. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The LAI observed at the heading stage ranged from 0.85 to 8.77 among the genotypes grown at the eight locations. A fairly stable allometric relationship was observed between LAI development and above-ground biomass growth during the period from transplanting to 2 weeks before heading over all the genotypes, sites and years (r = 0.91). The allometric relationship was, however, under the influence of leaf nitrogen content per unit leaf area (LNC, g m−2 leaf) and air temperature. On the basis of these results, we modeled the LAI development as a function of relative crop growth rate (RGR), LNC and air temperature. The rate of LAI decrease associated with leaf senescence was also described as a function of LNC.  相似文献   

12.
White rust (Albugo candida) is a highly destructive disease of oilseed Brassicas such as Brassica juncea and B. rapa, and has caused serious yield losses in Australia, China and India on both species. The first commercial B. juncea varieties are now being deployed in Australia, but their response to Australian strains of A. candida is yet to be defined under Australian field conditions. To identify useful sources of host resistance for Australia, China and India, in B. juncea, three field trials were undertaken in Western Australia. Forty-four B. juncea genotypes, viz. 22 from India, 12 from Australia and 10 from China, were tested. Varying levels of host resistance to Australian strains of A. candida (race 2) were identified among the genotypes from the three countries. Genotypes CBJ-001, CBJ-003 and CBJ-004 from China consistently showed high levels of resistance to A. candida on leaves across the three trials. Overall, the genotypes from China showed the best resistance, followed by the genotypes from Australia, with those from India being the most susceptible. The most susceptible genotypes were RL1359, RH30 and Seetha from India. It is noteworthy that both the incidence and severity of disease reflected varying levels of host resistance in the germplasm from the three countries, irrespective of whether screening was undertaken in the field using natural or artificial inoculation. Differentiation of resistance among these genotypes was similar to that we reported previously for artificially-inoculated seedlings or adult plants under glasshouse conditions, indicating that a choice of options is available to plant breeders to reliably differentiate host resistance among genotypes to white rust in B. juncea.  相似文献   

13.
The glycoalkaloid contents of foliage were measured in populations derived from a cross ofSolanum chacoense Bitter (PI 472810) with a composite sample of genotypes from a randomly matedSolanum tuberosum L. population. The mean total glycoalkaloid contents of the parent PI 472810 andtuberosum populations, and the F2 and F4 populations were 856, 121, 286, and 279 mg/100g fresh weight, respectively. The total glycoalkaloid content of the first backcross population, F2 xtuberosum, was 290 mg/100 g, close to the content of the F2. In a second backcross totuberosum, the mean total content was 148 mg/100 g, close to the content of the parenttuberosum population. Only the glycoalkaloids α-solanine and α-chaconine were found in PI 472810, whereas in the parenttuberosum, hybrid, and backcross populations, the glycoalkaloids α & β-solamarine also were found in a small number of genotypes. The ratios of chaconine to solanine contents were significantly (P≤.05) different in the parent PI 472810 andtuberosum populations, 2.55 and 2.12, respectively. The ratios in the F2 and F4 populations were similar to that of PI 472810, whereas the ratios in the backcross populations were closer to that of thetuberosum parent. The levels of foliage glycoalkaloids in the hybrid and backcross populations paralleled the levels of potato leafhopper,Empoasca fabae Harris, resistance measured in a previous study.  相似文献   

14.
The glycoalkaloid contents of tubers were measured in hybrid and back-cross populations derived from a cross ofSolarium chacoense Bitter (PI 472810, 2n=2x=24) withSolanum tuberosum L. (2n=4x=48). In tubers sampled from near the median size in each population and parent, the mean total glycoalkaloid (TGA) contents of theS. chacoense andS. tuberosum parent genotypes, and the F2 and F4 hybrid genotypes were 245, 4, 39, and 35 mg/ 100 g fresh weight (fw), respectively. Backcrossing the F2 genotypes toS. tuberosum reduced the mean TGA content to 15 mg/100 g fw. A second backcross further reduced the content to 9 mg/100 g fw. However, some genotypes in both backcross populations (25% and 10%) had TGA contents above the generally accepted upper limit of 20 mg/100 g fw. Tuber size was significantly smaller in theS. chacoense parent and the hybrid populations compared with the size in theS. tuberosum parent and backcross populations. In a second sampling of tubers from each population, intentionally selected to equalize tuber size among populations, the mean tuber size for populations was reduced by 79%. The mean population TGA content increased by 44%. However, the differences and rankings among parent, hybrid, and backcross populations were the same for both tuber samplings.  相似文献   

15.
Drought stress is the most important abiotic factor limiting upland rice yields. Identification of quantitative trait loci (QTL) conferring improved drought resistance may facilitate breeding progress. We previously mapped a QTL with a large effect on grain yield under severe drought stress (qtl12.1) in the Vandana/Way Rarem population. In the current paper, we present results from a series of experiments investigating the physiological mechanism(s) by which qtl12.1 affects grain yield under drought conditions. We performed detailed plant water status measurements on a subset of lines having similar crop growth duration but contrasting genotypes at qtl12.1 under field (24 genotypes) and greenhouse (14 genotypes) conditions. The Way Rarem-derived allele of qtl12.1 was confirmed to improve grain yield under drought mainly through a slight improvement (7%) in plant water uptake under water-limited conditions. Such an apparently small increase in water uptake associated with this allele could explain the large effect on yield observed under field conditions. Our results suggest that this improvement of plant water uptake is likely associated with improved root architecture.  相似文献   

16.
Blackleg and stem rot caused by coliform bacteria belonging to Dickeya spp. and Pectobacterium spp. (both referred to as Erwinia in this paper) are a problem for potato growers worldwide and no sources of high tolerance are currently present in the cultivated S. tuberosum gene pool. To find sources of tolerance, 532 genotypes from 340 accessions, covering most of the known potato species, were assayed with P. wasabiae, P. carotovorum and D.solani’ species in a petiole test. This petiole test was optimized later on using well responding genotypes from the broad screen. Based on the obtained data, the best developmental stage for cell wall degradation tests was identified to be the 4th-6th youngest leaf. Under the stringent biotic and climatic screening conditions used, only three genotypes were regarded as tolerant against all tested Erwinia species. These genotypes all belonged to the series Yungasensa, this series can be readily crossed with cultivated potato and is considered as a genetic source to upgrade the Erwinia tolerance level of cultivated potato.  相似文献   

17.
The aim of this research was to evaluate acute toxicity of the essential oil of leaves of Chinese chives, Allium tuberosum Rottler ex Spreng (Asparagales: Alliaceae) and its major constituents against Apolygus lucorum Meyer-Dür (Hemiptera: Miridae). The essential oil of A. tuberosum leaves was obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography-mass spectrometry. The major constituents of the oil were sulfur-containing compounds, including allyl methyl trisulfide (36.24%), diallyl disulfide (27.26%), diallyl trisulfide (18.68%), and dimethyl trisulfide (9.23%). The essential oil of A. tuberosum leaves exhibited acute toxicity against Ap. lucorum with an LD50 value of 20.03 μg per adult. Among the main compounds, diallyl trisulfide (LD50 = 10.13 μg per adult) showed stronger acute toxicity than allyl methyl trisulfide (LD50 = 21.10 μg per adult) and dimethyl trisulfide (LD50 = 21.65 μg per adult). The LD50 value of diallyl disulfide against Ap. lucorum was 28.10 μg per adult. The results indicated that the essential oil of A. tuberosum and its major constituents may have a potential to be developed as botanical insecticides against Ap. lucorum.  相似文献   

18.
Common scab, black scurf and silver scurf belong to serious diseases of cultivated potato that especially impair tuber quality. Tuber infection in 44 potato (Solanum tuberosum ssp. tuberosum L.) varieties was evaluated using two measures – severity and incidence of infected tubers. Both measures were highly correlated. An important result derived from this study supports fungicide application against potato late blight secondarily acts on reducing tuber infection by all evaluated pathogens. Therefore, the conventional potato growing seems to be more effective compared to ecological growing. The pedigree analysis of 44 varieties indicated the presence of Solanum demissum genotypes in the variety genome may negatively affect variety response to Helminthosporium solani presence.  相似文献   

19.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Hemiptera: Aphididae) are responsible for yield reduction in potato (Solanum tuberosum) production by direct phloem feeding and by spreading viruses. Breeding resistant traits from Solanum chomatophilum into the potato germplasm provides alternative means to control aphid infestations. Integrated pest management strategy, using plant resistance, benefits from the characterization of the resistance and of its impact on aphid biology. Our objective was to characterize the resistance of S. chomatophilum by assessing the effects of accessions, plant parts on aphid performance, and by assessing the impact of the resistance factors on different aphid developmental stages and on alate morph production. Detailed aphid performance was obtained by measuring fecundity, survival, percentage of nymphs that reached adult moult, and population growth using whole plant and clip cage experimental designs. Accession and plant physiological age, but not aphid developmental stage, influenced all life-history parameters, except for alate morph production which was not induced on the resistant accessions. Plant part influence was independent of plant species and accession. Both experimental designs resulted in congruent resistance levels at the accession level for each of the two aphid species, supporting the use of any of them in S. chomatophilum resistance screening. PI243340 was resistant to both aphid species, while PI365324 and PI310990 were also resistant to M. euphorbiae and M. persicae, respectively.  相似文献   

20.
Deeper rooting 1(Dro1) and Deeper rooting 2(Dro2) are the QTLs that contribute considerably to root growth angle assisting in deeper rooting of rice plant. In the present study, a set of 348 genotypes were shortlisted from rice germplasm based on root angle study. Screening results of the germplasm lines under drought stress identified 25 drought tolerant donor lines based on leaf rolling, leaf drying, spikelet fertility and single plant yield. A panel containing 101 genotypes was constituted based on screening results and genotyped using Dro1 and Dro2 markers. Structure software categorized the genotypes into four sub-populations with different fixation index values for root growth angle. The clustering analysis and principal coordinate analysis could differentiate the genotypes with or without deeper rooting trait. The dendrogram constructed based on the molecular screening for deep rooting QTLs showed clear distinction between the rainfed upland cultivars and irrigated genotypes. Eleven genotypes, namely Dular, Tepiboro, Surjamukhi, Bamawpyan, N22, Dinorado, Karni, Kusuma, Bowdel, Lalsankari and Laxmikajal, possessed both the QTLs, whereas 67 genotypes possessed only Dro1. The average angle of Dro positive genotypes ranged from 82.7° to 89.7°. These genotypes possessing the deeper rooting QTLs can be taken as donor lines to be used in marker-assisted breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号