共查询到10条相似文献,搜索用时 0 毫秒
1.
Keisuke Katsura Shuhei Maeda Iskandar Lubis Takeshi Horie Weixing Cao Tatsuhiko Shiraiwa 《Field Crops Research》2008
A number of field trials on rice productivity have demonstrated very high yield, but reported limited information on environmental factors. The objective of this study was to reveal the environmental factors associated with high rice productivity in the subtropical environment of Yunnan, China. We conducted cross-locational field experiments using widely different rice varieties in Yunnan and in temperate environments of Kyoto, Japan in 2002 and 2003. The average daily radiation throughout the growing season was greater at Yunnan (17.1 MJ m−2 day−1 average over 2 years) relative to Kyoto (13.2 MJ m−2 day−1). The average daily temperature throughout the growing season was 24.7 °C at Yunnan, and 23.8 °C at Kyoto. The highest yield (16.5 tonnes ha−1) was achieved by the F1 variety Liangyoupeijiu at Yunnan in 2003, and average yield of all varieties was 33% and 39% higher at Yunnan relative to Kyoto in 2002 and 2003, respectively. There was a close correlation between grain yield and aboveground biomass at maturity, while there was little variation in the harvest index among environments. Large biomass accumulation was mainly caused by intense incident radiation at Yunnan, as there was little difference in crop radiation use efficiency (RUE) between locations. Large leaf area index (LAI) was also suggested to be an important factor. Average nitrogen (N) accumulation over 2 years was 49% higher at Yunnan than at Kyoto, and also contributed to the large biomass accumulation at Yunnan. The treatments of varied N application for Takanari revealed that the ratio of N accumulated at maturity to the amount of fertilized N was significantly higher at Yunnan than at Kyoto, even though there was no great difference in soil fertility. The Takanari plot with high N application showed a N saturation in plant growth at Kyoto, which might be related to low radiation and relatively high temperatures during the mid-growth stage. These results indicate that the high potential yield of irrigated rice in Yunnan is achieved mainly by intense incident solar radiation, which caused the large biomass and the N accumulation. The low nighttime temperature during the mid-growth stage was also suggested to be an important factor for large biomass accumulation and high grain yield at Yunnan. 相似文献
2.
In soybean, manual cross-pollination to produce large quantities of F1 hybrid seed for yield trials is difficult and time-consuming. Conversely, insect-mediated cross-pollination has been shown to produce large quantities of hybrid seed in soybean and could facilitate the identification of heterotic patterns. The objective of our study was: (1) evaluate F1 hybrid soybean plants from single crosses for yield and agronomic traits over several environments and (2) compare hybrid performance of the single crosses to lines developed from three-way crosses and backcrosses. In 2003, F1 seed of single-crosses and their parent lines were evaluated in replicated experiments at three locations. Also in 2003, three-way crosses, and BC1F1 seed were produced. In 2004, three-way crosses, BC1F1 crosses, and their parent lines were evaluated at one location. High-parent heterosis (HPH) in single-crosses for grain yield ranged from −41.11% to +11.19%; for protein content from −4.34% to +3.53%, and for oil content from −13.22% to −0.84%. In three-way crosses, HPH for yield ranged from −25.21% to −4.50%, for protein from −2.72% to +1.92%, and for oil from −5.87% to −1.20%. For BC1F1 crosses, HPH for yield ranged from −15.65% to +41.97%, for protein from −2.57% to +1.69%, and for oil from −2.47% to +2.22%. Although positive heterosis levels were observed across all populations tested to determine the economic feasibility it is imperative that more tests of more cross-combinations be evaluated in replicated environments. Extensive research in different environments must be conducted to determine what parental combinations will produce the highest heterosis levels, and to develop criteria for selecting the parents with the best combining ability. This will be important to maximize agronomic performance that can economically justify the use of hybrids in soybean production. 相似文献
3.
The foaming properties of gluten and acetylated gluten were studied at various concentration values (1%, 5%, 10% and 20%). Acetylated gluten was prepared by acetylation of gluten with acetic anhydride in presence of sodium hydroxide as catalyst. The foaming properties were characterised by measuring foam stability and drainage. It was found that foam made from acetylated gluten is more abundant and stable than the foam made from gluten studied in the whole range of concentration, i.e. 1–20%. 相似文献
4.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%. 相似文献
5.
The paper investigates the variation in laboratory fodder quality traits in stover of 16 cultivars of pearl millet grown over 2 consecutive years and subjected to two different fertilizer regimes and planting densities. Stover quality traits were nitrogen and sugar content, in vitro digestibility and metabolizable energy content as well as yield of digestible and metabolizable stover. Significant (P < 0.05) cultivar-dependent variations were observed for all these quality traits. Stover nitrogen contents were mostly below the levels (1.2% of dry matter) considered to be the minimum required for efficient feed digestion in the rumen, but choice of cultivar plus nitrogen fertilizer application could raise nitrogen levels to near, equal or above this threshold. Stover sugar contents were below 5% and mostly concentrated in the stems. Across management regimes stover in vitro digestibility varied by about 4% units, and by about 3–5% units within individual management regimes. Stover metabolizable energy contents of cultivars varied such that stover from superior cultivars could provide the energy maintenance requirement of livestock and theoretically moderate levels of live weight gains, while livestock fed on stover from poor cultivars would lose live weight. Yields of digestible and metabolizable stover (yield of stover dry matter times stover in vitro digestibility/metabolizable energy) varied among cultivars by at least 1.7-fold. Stover quality traits and grain yields of cultivars were largely unrelated (P > 0.05) suggesting that high stover quality will not be achieved on the expense of grain yield. Heritabilities for stover quality traits were high (h2 > 0.73) except for stover nitrogen content (h2 > 0.56). 相似文献
6.
Source or sink limitation of grain filling in cereals is often inferred from experiments in which the source:sink ratio is manipulated by shading, defoliation or grain removal. However, interpretation of this type of experiment is usually qualitative rather than quantitative in nature and the extent of any imbalance between the source and sink is not known. The objectives of the current work were: (1) to provide a detailed analysis of radiation interception, radiation-use efficiency (RUE) and carbohydrate storage reserves in winter barley in order to quantify the potential supply of photosynthates for grain filling; (2) to estimate the variation in source–sink balance between environments. Field experiments were conducted on cv Pearl at six sites in the UK and over 3 years. Crops were grown under a comparable husbandry regime at each site and received a full fertilizer and crop protection programme. When the cumulative interception of post-anthesis photosynthetically active radiation (PAR) was plotted against the increase in biomass to determine RUE, the pattern of response differed between sites and years; for some site/years the response was linear, for others it was non-linear where RUE decreased during the latter stages of grain filling. The extent and statistical significance of non-linearity was determined from the quadratic term of fitted 2nd order polynomials. There was no significant association between climatic variables, such as temperature, radiation or rainfall, and the value of the quadratic term of RUE. Neither could non-linearity of RUE be explained in terms of the shedding of leaf tissue during canopy senescence. There were weak associations (r2 < 0.3) between the extent of non-linearity and green area index (GAI), above-ground biomass, and specific leaf N, at ear emergence (Zadoks GS 59). A much stronger relationship (r2 = 0.63) was found between the source:sink ratio (green area per grain) at GS 59 and non-linearity of RUE. These results suggest that a major factor leading to the reduction in RUE during the second half of grain filling at some sites was feedback inhibition from a limited sink capacity. This conclusion is supported by a fairly strong positive association between RUE non-linearity and the apparent contribution of stem carbohydrate reserves to grain yield (r2 = 0.47). The potential assimilate supply for grain filling was estimated as (maximum post-anthesis RUE × PAR intercepted) + stem soluble carbohydrate reserves at GS 59. The potential supply exceeded the measured yield at all sites except one implying that crops were predominantly sink limited. The size of the excess, which is a measure of the relative source–sink balance during grain filling, differed widely between site/years. 相似文献
7.
Alleviation of soil compaction can be achieved through application of appropriate measures which will vary from soil to soil and with the socio-economic factors of the farmers. The effects of alleviation measures applied to artificially compacted soil on yield components, grain yield, dry matter and nutrient uptake by wheat was studied at the Agriculture Research Institute, Mingora, Pakistan, in two separate experiments in 2002–2003 and 2003–2004. The improvement measures included deep ploughing (DP), farmyard manure (FYM) and gypsum (GYP), and comprised a compacted control and four treatments T1 (control), T2 (DP), T3 (DP + FYM), T4 (DP + gypsum) and T5 (DP + FYM + GYP), arranged in completely randomized block design replicated four times. Improvement measures applied to compacted soil significantly decreased soil bulk density and increased total porosity. Bulk density decreased in the range of 12–15% while total porosity showed an increase of 16–23% over the control. Improvement measures significantly increased concentration and uptake of NPK in both years. Higher concentration and uptake was recorded during the second year as compared to the first year, probably as a result of higher seasonal rainfall in the second year. The uptake of NPK by wheat plants increased in the range of 43–51, 25–94 and 11–28%, respectively, over plants in the compacted control. Similarly, improvement treatments increased grains spike−1, thousand grain weight, dry matter accumulation and grain yield in the range of 14–21, 5–14, 3–10 and 21–37% respectively, over the control. This work demonstrates that it is possible to overcome the deleterious effects of compaction induced by wheeled traffic, and improve crop yields and nutrient uptake in intensive cropping systems in rainfed environments in Pakistan and similar environments. 相似文献
8.
Soil compaction is a major cause of decrease in crop yield. The most serious cause of soil compaction is continuous ploughing at the same depth which affects bulk density, porosity and root proliferation, consequently affecting concentration and uptake of nutrients by plants. The effects of soil compaction on concentration and uptake of Nitrogen, Phosphorus and Potassium (NPK) by wheat were studied at the Agriculture Research Institute, Mingora, Pakistan in two separate experiments, conducted during 2002–2003 and repeated in 2003–2004. The treatments in each experiment consisted of four compaction levels arranged in a randomized complete block design replicated four times. Subsoil compaction affected soil bulk density and total porosity. With increasing compaction, bulk density increased in the range of 15–26% while total porosity decreased in the range of 15–27%. Compaction treatments significantly and progressively decreased concentration and uptake of NPK in both years of the experiments. Higher nutrient concentration and uptake was recorded during the second year as compared to first year, probably as a result of higher seasonal rainfall. Concentration of NPK showed reductions of 5–20%, 10–53% and 9–21%, respectively, due to the compaction treatments over control. The uptake of NPK decreased due to the compaction treatments in the range of 7–26%, 11–54% and 11–28%, respectively, over control. Compaction treatments decreased the dry matter accumulation in the range of 2–9% whereas grain yield showed a reduction of 5–48%. Inverse relationships between bulk density, and concentration and uptake of NPK, dry matter accumulation and grain yield were recorded. The implications of these findings for intensive agricultural systems in Pakistan and similar environments are discussed. 相似文献
9.
The paper investigates management and cultivar type effects on pearl millet stover yield and fodder quality. Sixteen pearl millet cultivars available to farmers in India were selected to represent three cultivar types: (1) traditional landrace germplasm from the arid/semi-arid millet production zones, (2) improved dual-purpose (grain and stover) open-pollinated varieties incorporating differing amounts of traditional landrace germplasm and (3) commercial, grain-type F1 hybrids, bred for use in the arid/semi-arid zone. The cultivars were grown for 2 years (2000 and 2001) at high fertility (HF: 65 kg N ha−1 and 18 kg P ha−1) and low fertility (LF: 21 kg N ha−1 and 9 kg P ha−1). Within each fertility level high (HP) and low (LP) plant population densities were established by varying sowing rate and then thinning to the target populations (HP: 11 plants m−2 and LP: 5 plants m−2). Stover fodder quality traits (nitrogen concentration, sugar content, in vitro digestibility and metabolizable energy content) were analyzed using a combination of conventional laboratory analysis and near infrared spectroscopy. In general, fertility level and cultivar type had strong effects on grain and stover yields, and on a range of stover nutritional quality traits, but with significant year interactions. In contrast, the effect of population density on these variables was largely insignificant. Higher fertilizer application significantly increased grain and stover yields and stover nitrogen concentration, in vitro digestibility and metabolizable energy content. As a result, fertilization resulted in significant increases in the yields of both digestible and metabolizable stover. Landrace cultivars as a group produced higher quality fodder than modern hybrids, but at a significant cost in grain yield. Dual-purpose, open-pollinated cultivars were generally intermediate between the landraces and hybrids, in terms of both stover quality and grain yield, but produced the highest yields of both digestible and metabolizable stover. The paper discusses the implications of these findings for Indian pearl millet farmers with various resource levels and farming objectives. 相似文献
10.
JiaLong Wen YongChang SunLingYan Meng TongQi YuanFeng Xu Run-Cang Sun 《Industrial Crops and Products》2011,34(3):1491-1501
Ball-milled bamboo meal was completely dissolved under constant conditions (130 °C, 6 h) in the ionic liquid ([C4mim]Cl) and then the lauroylation was carried out at different conditions. The various factors, such as molar ratio and temperature, were investigated to evaluate the effect of modification. Results showed that the molar ratio played a very important role for the lauroylation. The weight percent gain (WPG) ranged from 167% to 528% when the molar ratio increased from 1.0 to 2.0 for 2 h. It has been shown that the highly substituted bamboo derivatives could be obtained by reacting bamboo meal with lauroyl chloride as the molar ratio is 2.0. All reactions were performed under mild conditions, low excess of reagent and a short reaction time as compared to the heterogeneous chemical modification. The physicochemical properties of the bamboo derivatives were also widely investigated. Results obtained from FTIR and NMR spectroscopies confirmed that the lauroylated derivatives were successfully synthesized in one step. It was also found that thermal stability of the esterified derivatives is lower than that of the unmodified bamboo meal. Moreover, the morphological properties of the esterified bamboo meal were significantly changed by chemical modification. The rough appearance of bamboo meal changed into a relatively homogeneous and smooth surface morphology after lauroylation. Furthermore, the lauroylated bamboo meal had excellent solubility in chloroform, which provides feasibility to electrostatic spinning of modified bamboo meal as biomaterials for industries. 相似文献